

Modern Techniques for
Implicit Modeling:

ACM SIGGRAPH 2005

Course 13

Course Organizers:

James F. O’Brien
University of California at Berkeley

Terry S. Yoo
National Library of Medicine, NIH

Lecturers:

Marc Alexa
DGM, TU Darmstadt

Haixia Du
National Library of Medicine, NIH

John C. Hart
University of Illinois Urbana-Champaign

About the Title Page

Top figure: Raycasting view of an implicit surface constructed from the Stanford Bunny
model using Compactly Supported Radial Basis Functions (CSRBF). The CSRBF
method introduces multiple zero-crossings, a condition that requires some care when
raycasting such models. By selecting a transfer function that accents high gradient
magnitudes, the desired surface can be rendered. For more information, see the reprint
later in these notes, Morse, et al., 2001. Interpolating Implicit Surfaces From Scattered
Surface Data Using Compactly Supported Radial Basis Functions, IEEE SMI 2001.

Middle figure: Shape transformation using “variational” implicit surfaces. The use of a
thin-plate spline as the radial basis function makes possible interpolation between
topologically distant objects. The result is smooth transformation between implicit
models, including this transition from knot to fist and the corresponding change in genus.
For more information, see the reprint: Turk, Greg and James O’Brien, 1999. Shape
Transformation Using Variational Implicit Functions, ACM SIGGRAPH 1999.

Bottom figure: The Stanford Lucy, consisting of 14 million points, is reconstructed as
an MPU implicit with a 0.01% max-norm approximation accuracy; the left part of the
model is colored according to the subdivision level which increases from blue to red.
The four models in the back are reconstructed from the point set with increasing
approximation error. For more information, see the reprint: Yutake Ohtake, Alexander
Belyaev, Marc Alexa, Greg Turk and Hans-Peter Seidel, 2003. Multi-level Partition of
Unity Implicits, ACM Transactions on Graphics, Vol. 22, No. 3, July 2003, Pages 463–
470.

Course Description
This course presents recent developments in modern implicit surfaces, particularly the
use of radial-basis functions, MPUs, and digital Morse theory, plus examples of real-
world applications from shape transformation to medical modeling. Lectures include the
mathematics of implicit modeling and some formal treatment of smoothness issues and
sampling constrained implicit surfaces.

Course Abstract:

Several recent advances allow implicit surfaces to move beyond the simple modeling of
blobby objects and simple sculpting with constructive geometry. Advanced techniques
and emerging methods can now be used for modeling and controlling implicit surfaces
generated by approximating and/or interpolating known data points. To demonstrate this,
we show how radial basis functions can model various body parts, partial differential
equations can be used to mold and shape surfaces, curvature can tie-dye bunnies, and
how objects can be extruded from polygon soup. These forms of "constraint-based" or
"data-driven" implicit surfaces have begun to supersede previous implicit techniques for
modeling objects with biological or natural appearances. Formal approaches to
computation, sampling, control, shape transformation, and user-applications will be
discussed. In particular, the course will contain new material on the use of nonlinear,
partial differential equations in modeling as well as sampling analysis for constrained,
interpolating, implicit surfaces. Some people think that implicit surfaces are rubbery, but
we will show that they are a solid foundation upon which to build modeling, animation
and visualization tools.

This course presents these techniques in a full day of valuable detailed talks,
including mathematical foundations of linear algebra, PDEs, sampling, and smoothness,
application demonstrations, implementation details and well-documented source code for
implementing these techniques. Topics include generating implicit surfaces that
interpolate point data, implicit surfaces for shape transformation, surface reconstruction
from computer vision data, medical applications, modern level sets, implicit methods to
compute medial structures, digital Morse theory, concluding with the presentation of a
library of software tools for interactive modeling with implicit surfaces.

Prerequisites:
Attendees should have a good working knowledge of basic graphics techniques and be
not easily frightened by terms such as "Partial Differential Equations," "Radial Basis
Functions," or "Line Integral." Familiarity with basic implicit surface techniques would
be useful, but not necessary.

 ii

Contents

Course Description... i
Contents .. ii
Course Syllabus.. iv

Speaker Contact Information... v

Speaker Biographies .. vi
Introduction .. 1

“Introduction to Implicit Modeling,” Terry S. Yoo.. 1

Implicit Surfaces that Interpolate .. 13

“Shape Transformation Using Variational Implicit Functions,” Greg Turk and
James O'Brien, in Computer Graphics Proceedings, Annual Conference
Series (SIGGRAPH 1999), August 1999, pp. 335-342 .. 13

“Modeling with Implicit Surfaces that Interpolate,” Greg Turk and James F.
O'Brien, ACM Transactions on Graphics, Vol. 21, No. 4, October 2002, Pages
855–873.. .. 21

Radial Spline Theory .. 40

“Some Notes on Radial Basis Functions and Thin Plate Splines,” John C. Hart 40

“Guaranteeing the Topology of an Implicit Surface Polygonization for
Interactive Modeling,” Barton T. Stander and John C. Hart, Computer
Graphics Proceedings, ACM SIGGRAPH Graphics Proceedings, Annual
Conference Series (SIGGRAPH 97), August 1997, pp. 279-286.............................. 44

“Using the CW-Complex to Represent the Topological Structure of Implicit
Surfaces and Solids,” John C. Hart, Proc. Implicit Surfaces '99, Sept. 1999,
pp. 107-112... 52

Compactly Supported RBFs in Implicit Surface Management................................. 58

“Interpolating Implicit Surfaces From Scattered Surface Data Using
Compactly Supported Radial Basis Functions,” Bryan Morse and Terry S.
Yoo and Penny Rheingans and David T. Chen and K.R. Subramanian, Shape
Modeling International, Genova, Italy, May 2001. .. 78

Implicit Modeling with PDE-based Techniques .. 88

“Implicit Modeling with PDE-based Techniques,” Haixia Du 88

“A Shape Design System Using Volumetric Implicit PDEs,” Haixia Du and
Hong Qin, Computer-Aided Design 36(2004) 1101-1116.116

 iii

Multi-level Partition of Unity Implicits (MPUs) ...132

“Introduction to Multi-level Partition of Unity Implicits (MPUs),” Marc Alexa......132
“Multi-level Partition of Unity Implicits,” Yutake Ohtake, Alexander Belyaev,
Marc Alexa, Greg Turk and Hans-Peter Seidel, ACM Transactions on
Graphics, Vol. 22, No. 3, July 2003, Pages 463–470. ...173

Implicit Moving Least Squares Surfaces (IMLS) ...181
“Interpolating and Approximating Implicit Surfaces from Polygon Soup,”
James F. O’Brien. ..181

“Interpolating and Approximating Implicit Surfaces from Polygon Soup,”
Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk, ACM Transactions
on Graphics, Vol. 23, No. 3, August 2004, Pages 896–904.204

“Provably Good Moving Least Squares,” Ravikrishna Kolluri , To Appear in
ACM-SIAM Symposium on Discrete Algorithms 2005..213

Medical Applications of Implicit Surfaces ..223
“Medical Applications of Implicit Surfaces,” Terry S. Yoo.223

“Anatomic Modeling from Unstructured Samples Using Variational Implicit
Surfaces,” Terry S. Yoo, Bryan Morse, K.R. Subramanian, Penny Rheingans,
and Michael J. Ackerman, In Studies in Health Technology and Informatics,
vol. 81, (Proceedings of Medicine Meets Virtual Reality 2001. J. D.
Westwood, et al., eds.), Amsterdam: IOS Press, pp. 594-600.245

“Active Contours Using a Constraint-Based Implicit Representation,” Bryan
Morse, Weiming Liu, Terry S. Yoo, and K.R. Subramanian, To appear in
Proceedings Computer Vision and Pattern Recognition, IEEE Computer
Society Press, June 2005. ...252

Wickbert: An Open-Source Interactive Implicit Surface Modeler.........................260
“Using Particles To Sample And Control Implicit Surfaces,” Andrew P.
Witkin and Paul S. Heckbert, Computer Graphics Proceedings, ACM
SIGGRAPH Graphics Proceedings, Annual Conference Series (SIGGRAPH
94), July 1994, pp. 269 - 277..260
“Using Particles to Sample and Control More Complex Implicit Surfaces,”
John Hart, Ed Bachta, Wojciech Jarosz and Terry Fleury, in Proceedings of
Shape Modeling International 2002. ..269

“A Programmable Particle System Framework For Shape Modeling,” Wen Y.
Su and John Hart, in Proceedings of Shape Modeling International June 2005.......277

 iv

Course Syllabus

8:30 - Yoo
Welcome, Introduction to Implicit Modeling (25 min)

8:55 - O’Brien
Implicit Surfaces that Interpolate (35 min)

9:30 - Hart
Radial Spline Theory (45 min)

•10:15 - Break

10:30 - Yoo
Compactly Supported RBFs in Implicit Surface Management (55 min)

11:25 - Du
Implicit Modeling with PDE-based Techniques (50 min)

•12:15 - Lunch

1:45 - Alexa
Multi-level Partition of Unity Implicits (MPUs) (55 min)

2:40 - O’Brien
Implicit Moving Least Squares Surfaces (IMLS) (50 min)

•3:30 - Break

3:45 - Yoo
Medical Applications of Implicit Surfaces (45 min)

4:30 - Hart
Wickbert: An Open-Source Interactive Implicit Surface Modeler (60 min)

•5:30 - End

 v

Speaker Contact Information
Marc Alexa

Darmstadt University of Technology
Discrete Geometric Modeling Group
Fraunhoferstr. 5
D-64283 Darmstadt

Phone: +49 6151 155 679
Fax: +49 6151 155 669
alexa@informatik.tu-darmstadt.de

Haixia Du
Visiting Scientist
National Library of Medicine
National Institutes of Health
8600 Rockville Pike
Bethesda, MD 20894

(301) 435-3268
fax: (301) 402-4080
hdu@mail.nih.gov

John C. Hart
Associate Professor
Department of Computer Science
University of Illinois Urbana-
Champaign
3212 DCL, MC 258
1304 W Springfield
Urbana, IL 61801

(217) 333-8740
fax: (217) 244-6869
jch@cs.uiuc.edu

James F. O’Brien
Assistant Professor
EECS, Computer Science Division
633 Soda Hall, Mail Code 1776
University of California at Berkeley
Berkeley, California 94720-1776

(510) 642-0865
fax: (510) 642-5775
job@eecs.berkeley.edu

Terry S. Yoo
Head, 3D Informatics Program
National Library of Medicine
National Institutes of Health
8600 Rockville Pike
Bethesda, MD 20894

(301) 435-3268
fax: (301) 402-4080
yoo@nlm.nih.gov

 vi

Speaker Biographies

Marc Alexa is an Assistant Professor of Computer Science at Darmstadt University of
Technology and heads the Discrete Geometric Modeling group. He is interested in representing
shapes and their deformation, using point sampled geometry, implicit surfaces, explicit
representations, and linear spaces of base shapes. He has lectured on topics related to shape
representations at SIGGRAPH and other conferences, has been a co-chair and has served as a
memeber of several committees of major graphics conferences, and will be papers co-chair of
Eurographics 2005 and general co-chair of the ACM/Eurographics Symposium on Point Based
Rendering 2005.

Haixia Du is a Postdoctoral Fellow in the Office of High Performance Computing and
Communications at the National Library of Medicine in the 3D Informatics Group. Her research
interests are in geometric and physics-based modeling, visualization, and medical imaging, with
emphasis on PDE-based shape modeling, including shape design, reconstruction,
metamorphosis, and simplification. She has co-authored several papers on implicit surface
reconstruction and manipulation from curve sketches, scattered data points, and volumetric data
using PDE techniques. Haixia received her Ph.D. in Computer Science from Stony Brook
University in 2004.

John C. Hart is Associate Professor of Computer Science at the University of Illinois
Urbana-Champaign. In 1993 he received an NSF award to explore implicit surfaces, and got
hooked. He co-chaired the 1996 Eurographics/SIGGRAPH Workshop on Implicit Surfaces, and
has organized/lectured in previous SIGGRAPH courses, including several on implicit surfaces.
Hart is co-author of Real-Time Shading and a contributing author of Modeling and Texturing: A
Procedural Approach, 3rd edition. Hart is the Editor-in-Chief of ACM Transactions on Graphics.
He served five years on the SIGGRAPH Executive Committee and was an executive producer of
the documentary "The Story of Computer Graphics."

James F. O'Brien is an Assistant Professor of Computer Science at the University of
California, Berkeley. His interests focus on generating realistic motion using physically based
simulation and motion-capture techniques. He has authored several papers on these topics,
including ten presented at SIGGRAPH and his work has been featured multiple times in
SIGGRAPH's Electronic Theater. He received his doctorate from the Georgia Institute of
Technology in 2000, the same year he joined Berkeley's Faculty. O'Brien is a Sloan Fellow,
Technology Review selected him one of their TR-100 for 2004, and he was recently awarded
grants from the Okawa and Hellman Foundations.

Terry S. Yoo is a Computer Scientist in the Office of High Performance Computing and
Communications, National Library of Medicine, NIH, where he explores the processing and
visualizing of 3D medical data, interactive 3D graphics, and computational geometry.
Previously as a professor of Radiology, he managed a research program in Interventional MRI
with the University of Mississippi. Terry holds an A.B. in Biology from Harvard, and a M.S.
and Ph.D. in Computer Science from UNC Chapel Hill.

Modern Techniques for Implic it Modeling Introduction

SIGGRAPH 2003 Course 13

Modern Techniques for
Implicit Modeling

James F. O’Brien
University of California Berkeley

Terry S. Yoo
National Library of Medicine, NIH

1

Modern Techniques for Implic it Modeling Introduction

Why implicit surfaces?

• Implicit surfaces are as old as graphics…
– A compact representation for orientable, closed

surfaces.

– Mathematically tractable:
• Can control mathematical continuity of the surface.

• No cracks.

– Not a basic machine representation
• Not polygons, not textures, not voxels…

Why this course? …

• Implicit surfaces have been:
– Capricious, generating spurious nodes/blobs

– Inclined to make creases, folds, and pinches

– Difficult to craft surfaces that conform to physical models

• Recent advances show promise for:
– Character animation, shape transformation

– Medical modeling, computer vision

– Topology control, front evolution (level sets)

2

Modern Techniques for Implic it Modeling Introduction

Modern Techniques for
Implicit Modeling…
• We will cover implicit

surfaces of/by/for:
– Shape Transformation

– Medical Applications

– Computer Vision

– Digital Morse Theory

– Software

– Level Sets

– Level Set Applications

• We will not cover:

– Comprehensive
Introduction to implicit
surfaces

– Blob Trees

– Parametric surfaces

– Meta-balls

– Constructive geometry

Lecturers

Marc Alexa
– DGM, TU Darmstadt

Haixia Du
– NLM / NIH

John Hart
– Univ. of Illinois Urbana-

Champaign

James F. O’Brien
– Georgia Institute of

Technology

Terry S. Yoo
– NLM / NIH

3

Modern Techniques for Implic it Modeling Introduction

Course at a glance

8:30 - Yoo
Welcome, Introduction to Implicit Modeling

8:55 - O’Brien
Implicit Surfaces that Interpolate

9:30 - Hart
Radial Spline Theory

• 10:15 - Break

10:30 - Yoo
Compactly Supported RBFs in Implicit
Surface Management

11:25 - Du
Implicit Modeling with PDE-based
Techniques

• 12:15 - Lunch

1:45 - Alexa
Multi-level Partition of Unity Implicits
(MPUs)

2:40 - O’Brien
Implicit Moving Least Squares Surfaces
(IMLS)

• 3:30 - Break

3:45 - Yoo
Medical Applications of Implicit Surfaces

4:30 - Hart
Wickbert: An Open-Source Interactive
Implicit Surface Modeler

• 5:30 - End

Course Supplementary
Materials Website

• Links
http://visual.nlm.nih.gov/tutorials/sig2005/index.html

http://graphics.cs.uiuc.edu/projects/surface

• Text
J. Bloomenthal, ed. Introduction to Implicit Surfaces.

Morgan Kaufmann. 1997. pp. 332.

4

Modern Techniques for Implic it Modeling Introduction

SIGGRAPH 2003 Course 13

Introduction to
Implicit Modeling

Terry S. Yoo
National Library of Medicine, NIH

Some SIGGRAPHistory

• Blobs and Metaballs
J.Blinn, A Generalization of Algebraic Surface Drawing, ACM Trans.

Graphics, 1:3, Jul. 1982, pp. 135-256.

S.Muraki, Volumetric Shape Description of Range Data Using
Blobby Model, Computer Graphics, 25:4, 1991, pp. 227-235
(Proc. SIGGRAPH 91).

• Constructive solid geometry (polyhedral & implicit surfaces)
D. Laidlaw, W. Trumbore and J. Hughes. Constructive Solid

Geometry for Polyhedral Objects. In Computer Graphics,
Proceedings of SIGGRAPH '86, pages 161-170, August 1986.

G.Wyvill, C.McPheeters, B.Wyvill, Data Structure for Soft Objects,
The Visual Computer, 2:4, Aug. 1986, pp. 227-234.

5

Modern Techniques for Implic it Modeling Introduction

α

Implicit

Equiangular Parametric
 (transcendental trigonometric)

p = (cos(α), sin(α))

p = (±(1-t2) / (1+t2), 2t / (1+t2))

Non-Equiangular Parametric
 (rational trigonometric)

px
2+py

2-1 = 0

Implicit Surfaces

• Not patches (no seams).

• Oriented surfaces (have a natural inside and outside).

• Differentiable, closed,
Continuous

6

Modern Techniques for Implic it Modeling Introduction

Implicit Surfaces

• Can combine
functions, apply
functions from
constructive solid
geometry.

• No origin on the
manifold.

• Usually, no unique
solutions.

Polygonized CSG
objects.
courtesy Brian Wyvill
and Kees van Overveld

7

Modern Techniques for Implic it Modeling Introduction

Natural Shape
Transformation

8

Modern Techniques for Implic it Modeling Introduction

Compactly Supported
Implicit Characteristic Fcn

Natural Blending

9

Modern Techniques for Implic it Modeling Introduction

More SIGGRAPHistory

• Generative Models: Implicit, Parametric, Medical

J.Bloomenthal, K.Shoemake, Convolution Surfaces, Computer Graphics 25:4, 1991
(Proc. SIGGRAPH), pp. 251-256.

 Snyder, John M. and James T. Kajiya, ``Generative modeling: a symbolic system for
geometric modeling,'' [Figures], in Proceedings of SIGGRAPH 1992, ACM
SIGGRAPH, 1992, pp. 369-378.

Joshi, S, SM Pizer, PT Fletcher, A Thall, G Tracton, Multi-Scale 3-D Deformable
Model Segmentation Based on Medical Description. Information Processing in
Medical Imaging (IPMI 2001), MF Insana, RM Leahy, eds., Springer LNCS 2082:
64-77.

• Level Sets (discrete implicit surfaces)

J Sethian. 1999. Level Set Methods and Fast Marching Methods, second ed.
Cambridge University Press, Cambridge, UK.

 Ross T. Whitaker, A Level-Set Approach to 3D Reconstruction from Range Data,
International Journal of Computer Vision, v.29 n.3, p.203-231, Sept. 1998

 K. Museth, D.E. Breen, R.T. Whitaker and A.H. Barr, ``Level Set Surface Editing
Operators,'' ACM Transactions on Graphics (Proc. SIGGRAPH), Vol. 21, No. 3,
July 2002, pp. 330-338.

10

Modern Techniques for Implic it Modeling Introduction

11

Modern Techniques for Implic it Modeling Introduction

Convolution Surfaces

Level Sets

12

Computer Graphics Proceedings, Annual Conference Series, 1999

Shape Transformation Using Variational Implicit Functions

Greg Turk James F. O’Brien

Georgia Institute of Technology

Abstract

Traditionally, shape transformation using implicit functions is per-
formed in two distinct steps: 1) creating two implicit functions,
and 2) interpolating between these two functions. We present a
new shape transformation method that combines these two tasks
into a single step. We create a transformation between two N-
dimensional objects by casting this as a scattered data interpolation
problem in N + 1 dimensions. For the case of 2D shapes, we place
all of our data constraints within two planes, one for each shape.
These planes are placed parallel to one another in 3D. Zero-valued
constraints specify the locations of shape boundaries and positive-
valued constraints are placed along the normal direction in towards
the center of the shape. We then invoke a variational interpolation
technique (the 3D generalization of thin-plate interpolation), and
this yields a single implicit function in 3D. Intermediate shapes are
simply the zero-valued contours of 2D slices through this 3D func-
tion. Shape transformation between 3D shapes can be performed
similarly by solving a 4D interpolation problem. To our knowledge,
ours is the first shape transformation method to unify the tasks of
implicit function creation and interpolation. The transformations
produced by this method appear smooth and natural, even between
objects of differing topologies. If desired, one or more additional
shapes may be introduced that influence the intermediate shapes in
a sequence. Our method can also reconstruct surfaces from multiple
slices that are not restricted to being parallel to one another.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—surfaces and object representations

Keywords: Shape transformation, shape morphing, contour inter-
polation, implicit surfaces, thin-plate techniques.

1 Introduction

The shape transformation problem can be stated as follows: Given
two shapes A and B, construct a sequence of intermediate shapes
so that adjacent pairs in the sequence are geometrically close to one
another. Playing the resulting sequence of shapes as an animation
would show object A deforming into object B. Sequences of 2D
shapes can be thought of as slices through a 3D surface, as shown in
Figure 1. Shape transformation can be performed between objects
of any dimension, although 2D and 3D shapes are by far the most
common cases. Shape transformation has applications in medicine,
computer aided design, and special effects creation. We give an
overview of these three applications below.

One important application of shape transformation in medicine is
contour interpolation. Non-invasive imaging techniques often col-

turk@cc.gatech.edu, job@acm.org.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGGRAPH 99, Los Angeles, CA USA
Copyright ACM 1999 0-201-48560-5/99/08 . . . $5.00

Figure 1: Visualization of transformation between X and O shapes.
Top and bottom planes contain constraints for the two shapes.
Translucent surface is the isosurface of a 3D variational implicit
function, and slices through it give intermediate shapes.

lect data about a patient’s internal anatomy in “slices” of a particu-
lar size such as 512×512 samples. Usually many fewer slices are
taken along the third dimension so that a resulting volume might,
for example, be sampled at 512× 512× 30 resolution. To recon-
struct a 3D model of a particular organ, the samples are segmented
to create shapes (contours) within the slices. Intermediate shapes
are then created between slices in the sparsely sampled dimension.
The reconstructed 3D object is formed by stacking together the
original and the interpolated contours. This is an example of 2D
shape transformation.

Shape transformation can also be a useful tool in computer aided
geometric design. Consider the problem of creating a join between
two metal parts with different cross-sections. It is important for the
connecting surface to be smooth because those places with sharp
ridges or creases are the locations that are most likely to form
cracks. The intermediate surface joining the two parts can be cre-
ated using shape transformation, much in the same way as with
contour interpolation for medical imaging. Because of the smooth-
ness properties of variational interpolation methods, we consider
them a natural tool to explore for shape transformation in CAD.

Finally, animated shape transformations have been used to cre-
ate dramatic special effects for feature films and commercials. One
of the best-known examples of shape transformation is in the film
Terminator 2. In this film, a cyborg policeman undergoes a number
of transformations from an amorphous and highly reflective surface
to various destination shapes. 2D image morphing would not have
accurately modeled the reflection of the environment off the surface
of the deforming cyborg, hence tailor-made 3D shape transforma-
tion programs were used for these effects [9].

In this paper we use variational interpolation in a new way to
produce high-quality shape transformations that may be used for
any of the previously mentioned applications. Our method allows a
user to control the transformation in several ways, and it is general
enough to produce transformations between shapes of any topology.

2 Previous Work

Most shape transformation techniques can be placed into one of
two categories: parametric correspondence methods and implicit

335
13

ACM SIGGRAPH 99, Los Angeles, California, August 8–13, 1999

function interpolation. Parametric methods are typically faster to
compute and require less memory because they operate on a lower-
dimensional representation of an object than do implicit function
methods. Unfortunately, transforming between objects of differ-
ent topologies is considerably more difficult with parametric meth-
ods. Parametric approaches also can suffer from problems with
self-intersecting surfaces, but this is never a problem with implicit
function methods. Techniques that use implicit function interpola-
tion gracefully handle changes in topology between objects and do
not create self-intersecting surfaces.

A parametric correspondence approach to shape transformation
attempts to find a “reasonable” correspondence between pairs of
locations on the boundaries of the two shapes. Intermediate shapes
are then created by computing interpolated positions between the
corresponding pairs of points. Many shape transformation tech-
niques have been created that follow the parametric correspondence
approach. One early application of this approach is the method
of contour interpolation described by Fuchs, Kedem and Uselton
[10]. Their method attempts to find an “optimal” (minimum-area)
triangular tiling that connects two contours using dynamic pro-
gramming. Many subsequent techniques followed this approach of
defining a quality measure for a particular correspondence between
contours and then invoking an optimization procedure [22, 25].
There have been fewer examples of using parametric correspon-
dence for 3D shape transformation. One quite successful 3D para-
metric method is the work of Kent et al. [17]. The key to their
approach is to subdivide the polygons of the two models in a man-
ner that creates a correspondence between the vertices of the two
models. More recently, Gregory and co-workers created a similar
method that also allows a user to specify region correspondences
between meshes to better control a transformation [12].

An entirely different approach to shape transformation is to cre-
ate an implicit function for each shape and then to smoothly interpo-
late between these two functions. A shape is defined by an implicit
function, f (x), as the set of all points x such that f (x) = 0. For
contour interpolation in 2D, the implicit function can be thought of
as a height field over a two-dimensional domain, and the boundary
of a shape is the one-dimensional curve defined by all the points
that have the same elevation value of zero. An implicit function in
3D is a function that yields a scalar value at every point in 3D. The
shape described by such a function is given by those places in 3D
whose function value is zero (the isosurface).

One commonly used implicit function is the inside/outside func-
tion or characteristic function. This function takes on only two
values over the entire domain. The two values that are typically
used are zero to represent locations that are outside and one to
signify positions that are inside the given shape. Given a power-
ful enough interpolation technique, the characteristic function can
be used for creating shape transformations. Hughes presented a
successful example of this approach by transforming characteris-
tic functions into the frequency domain and performing interpola-
tion on the frequency representations of the shapes [15]. Kaul and
Rossignac found that smooth intermediate shapes can be generated
by using weighted Minkowski sums to interpolate between charac-
teristic functions [16]. They later created a generalization of this
technique that can use several intermediate shapes to control the in-
terpolation between objects [24]. Using a wavelet decomposition
of a characteristic function allowed He and colleagues to create in-
termediates between quite complex 3D objects [13].

A more informative implicit function can provide excellent inter-
mediate shapes even if a simple interpolation technique is used. In
particular, the signed distance function (sometimes called the dis-
tance transform) is an implicit function that gives very plausible
intermediate shapes even when used with simple linear interpola-
tion of the function values of the two shapes. The value of the
signed distance function at a point x inside a given shape is just the
Euclidean distance between x and the nearest point on the bound-
ary of the shape. For a point x that is outside the shape, the signed
distance function takes on the negative of the distance from x to the
closest point on the boundary.

Several researchers have used the signed distance function to in-
terpolate between 2D contours [19, 14]. The distance function for
each given shape is represented as a regular 2D grid of values, and
an intermediate implicit function is created by linear interpolation
between corresponding grid values of the two implicit functions.
Each intermediate shape is given by the zero iso-contour of this in-
terpolated implicit function. In contrast to the global interpolation
methods described above (frequency domain, wavelets, Minkowski
sum), this interpolation is entirely local in nature. Nevertheless,
the shape transformations that are created by this method are quite
good. In essence, the information that the signed distance function
encodes (distance to nearest boundary) is enough to make up for
the purely local method of interpolation. Payne and Toga were the
first to transform three dimensional shapes using this approach [23].
Cohen-Or and colleagues gave additional control to this same ap-
proach by combining it with a warping technique in order to pro-
duce shape transformations of 3D objects [7].

Our approach to shape transformation combines the two steps
of building implicit functions and interpolating between them. To
our knowledge, it is the only method to do so. The remainder of
this paper describes how variational interpolation can be used to
simultaneously solve these two tasks.

3 Variational Interpolation

Our approach relies on scattered data interpolation to solve the
shape transformation problem. The problem of scattered interpo-
lation is to create a smooth function that passes through a given
set of data points. The two-dimensional version of this problem
can be stated as follows: Given a collection of k constraint points
{c1,c2, . . . ,ck} that are scattered in the plane, together with scalar
height values at each of these points {h1,h2, . . . ,hk}, construct a
smooth surface that matches each of these heights at the given lo-
cations. We can think of this solution surface as a scalar-valued
function f (x) so that f (ci) = hi, for 1 ≤ i ≤ k.

One common approach to solving scattered data problems is to
use variational techniques (from the calculus of variations). This
approach begins with an energy that measures the quality of an in-
terpolating function and then finds the single function that matches
the given data points and that minimizes this energy measure. For
two-dimensional problems, thin-plate interpolation is the varia-
tional solution when using the following energy function E:

E =
�

Ω
f 2
xx(x)+2 f 2

xy(x)+ f 2
yy(x) (1)

The notation fxx means the second partial derivative in the x di-
rection, and the other two terms are similar partial derivatives, one
of them mixed. The above energy function is basically a measure of
the aggregate squared curvature of f (x) over the region of interest
Ω. Any creases or pinches in a surface will result in a larger value of
E. A smooth surface that has no such regions of high curvature will
have a lower value of E. The thin-plate solution to an interpolation
problem is the function f (x) that satisfies all of the constraints and
that has the smallest possible value of E.

The scattered data interpolation problem can be formulated in
any number of dimensions. When the given points ci are positions
in N-dimensions rather than in 2D, this is called the N-dimensional
scattered data interpolation problem. There are appropriate gener-
alizations to the energy function and to thin-plate interpolation for
other dimensions. In this paper we will perform interpolation in
two, three, four and five dimensions. Because the term thin-plate
is only meaningful for 2D problems, we will use variational inter-
polation to mean the generalization of thin-plate techniques to any
number of dimensions.

The scattered data interpolation task as formulated above is a
variational problem where the desired solution is a function, f (x),
that will minimize equation 1 subject to the interpolation constraints
f (ci) = hi. Equation 1 can be solved using weighted sums of the

336
14

Computer Graphics Proceedings, Annual Conference Series, 1999

Figure 2: Implicit functions for an X shape. Left shows the signed
distance function, and right shows the smoother variational implicit
function.

radial basis function φ(x) = |x|2 log(|x|). The family of variational
problems that includes equation 1 was studied by Duchon [8].

Using the appropriate radial basis function, we can then express
the interpolation function as

f (x) =
n

∑
j=1

d jφ(x− c j)+P(x) (2)

In the above equation, c j are the locations of the constraints,
the d j are the weights, and P(x) is a degree one polynomial that
accounts for the linear and constant portions of f . Because the
thin-plate radial basis function naturally minimizes equation 1, de-
termining the weights, d j , and the coefficients of P(x) so that the
interpolation constraints are satisfied will yield the desired solution
that minimizes equation 1 subject to the constraints. Furthermore,
the solution will be an exact analytic solution, and is not subject to
approximation and discretization errors that may occur when using
finite element or finite difference methods.

To solve for the set of d j that will satisfy the interpolation con-
straints hi = f (ci), we can substitute the right side of equation 2 for
f (ci), which gives:

hi =
k

∑
j=1

d jφ(ci − cj)+P(ci) (3)

Since this equation is linear with respect to the unknowns, d j
and the coefficients of P(x), it can be formulated as a linear system.
For interpolation in 3D, let ci = (cx

i ,c
y
i ,c

z
i) and let φi j = φ(ci − c j).

Then this linear system can be written as follows:

























φ11 φ12 . . . φ1k 1 cx
1 cy

1 cz
1

φ21 φ22 . . . φ2k 1 cx
2 cy

2 cz
2

...
...

...
...

...
...

...
φk1 φk2 . . . φkk 1 cx

k cy
k cz

k
1 1 . . . 1 0 0 0 0
cx

1 cx
2 . . . cx

k 0 0 0 0
cy

1 cy
2 . . . cy

k 0 0 0 0
cz

1 cz
2 . . . cz

k 0 0 0 0

















































d1
d2
...

dk
p0
p1
p2
p3

























=

























h1
h2
...

hk
0
0
0
0

























The above system is symmetric and positive semi-definite, so
there will always be a unique solution for the d j and p j [11]. For
systems with up to a few thousand constraints, the system can be
solved directly with a technique such as symmetric LU decompo-
sition. We used symmetric LU decomposition to solve this system
for all of the examples shown in this paper.

Using the tools of variational interpolation we can now turn our
attention to creating implicit functions for shape transformation.

Figure 3: Upper row is a shape transformation created using the
signed distance transform. Lower row is the sequence generated
using a single variational implicit function.

4 Smooth Implicit Function Creation

In this section we will lay down the groundwork for shape transfor-
mation by discussing the creation of smooth implicit functions for
a single shape. In particular, we will use variational interpolation of
scattered constraints to construct implicit functions. Later we will
generalize this to create functions that perform shape transforma-
tion.

Let us first examine the signed distance transformation because
it is commonly used for shape transformation. The left half of
Figure 2 shows a height field representation of the signed distance
function of an X shape. The figure shows sharp ridges (the medial
axis) that run down the middle of the height field. Ridges appear
in the middle of shapes where the points are equally distant from
two or more boundary points of the original shape. The values of a
signed distance function decrease as one moves away from the ridge
towards the boundaries. Figure 3, top row, shows a shape interpola-
tion sequence between an X and an O shape that was created by lin-
ear interpolation between two signed distance functions. Note the
pinched portions of some of the intermediate shapes. These sharp
features are not isolated problems, but instead persist over many in-
termediate shapes. The cause of these pinches are the sharp ridges
of signed distance functions. In many applications such artifacts are
undesirable. In medical reconstruction, for example, these pinches
are a poor estimate of shape because most biological structures have
smooth surfaces. Because of this, we seek implicit functions that
are continuous and that have a continuous first derivative.

4.1 Variational Implicit Functions in 2D

We can create smooth implicit functions for a given shape using
variational interpolation. This can be done both for 2D and 3D
shapes, although we will begin by discussing the 2D case. In this
approach, we create a closed 2D curve by describing a number of
locations through which the curve will pass and also specifying a
number of points that should be interior to the curve. We call the
given points on the curve the boundary constraints. The boundary
constraints are locations at which we require our implicit function
to take on the value of zero. Paired with each boundary constraint
is a normal constraint, which is a location at which the implicit
function is required to take on the value one. (Actually, any posi-
tive value could be used.) The locations of the normal constraints
should be towards the interior of the desired curve, and also the line
passing through the normal constraint and its paired boundary con-
straint should be parallel to the desired normal to the curve. The
collection of boundary and normal constraints are passed along to
a variational interpolation routine as the scattered constraints to be
interpolated. The function that is returned is an implicit function
that describes our curve. The curve will exactly pass through our
boundary constraints.

Figure 4 (left) illustrates eight such pairs of constraints in the
plane, with the boundary constraints shown as circles and the nor-
mal constraints as plus signs. When we invoke variational interpo-

337
15

ACM SIGGRAPH 99, Los Angeles, California, August 8–13, 1999

Figure 4: At left are pairs of boundary and normal constraints (cir-
cles and pluses). The middle image uses intensity to show the re-
sulting variational implicit function, and the right image shows the
function as a height field.

lation with such constraints, the result is a function that takes on the
value of zero exactly at our zero-value constraints and that is posi-
tive in the direction of our normal constraints (towards the interior
of the shape). The closed curve passing through the zero-value con-
straints in Figure 4 (middle) is the iso-contour of the implicit func-
tion created by this method. Figure 4 (right) shows the resulting
implicit function rendered as a height field. Given enough suitably-
placed boundary constraints we can define any closed shape. We
call an implicit function that is created in this manner a variational
implicit function. This new technique for creating implicit functions
also show promise for surface modeling, a topic that is explored in
[27].

We now turn our attention to defining boundary and normal con-
straints for a given 2D shape. Assume that a given shape is rep-
resented as a gray-scale image. White pixels represent the interior
of a shape, black pixels will be outside the shape, and pixels with
intermediate gray values lie on the boundary of the shape. Let m
be the middle gray value of our image’s gray scale range. Our goal
is to create constraints between any two adjacent pixels where one
pixel’s value is less than m and the other’s value is greater. Identify-
ing these locations is the 2D analog of finding the vertex locations
in a 3D marching cubes algorithm [21].

We traverse the entire gray-scale image and examine the east and
south neighbor of each pixel I(x,y). If I(x,y) < m and either neigh-
bor has a value greater than m, we create a boundary constraint at a
point along the line segment joining the pixel centers. A boundary
constraint is also created if I(x,y) > m and either neighbor takes
on a value less than m. The value of the constraint is zero, and we
set the position of the constraint at the location between the two
pixels where the image would take on the value of m if we assume
linear interpolation of pixel values. Next, we estimate the gradient
of the gray scale image using linear interpolation of pixel values
and central differencing. We then create a normal constraint a short
distance away from the zero crossing in the direction of the gradi-
ent. We have found that a distance of a pixel’s width between the
boundary and normal constraints works well in practice. Figure 2
(right) shows the implicit function for an X shape that was created
using variational interpolation from such constraints. It is smooth
and free of sharp ridges.

4.2 Variational Implicit Functions in 3D

We can create implicit functions for 3D surfaces using variational
interpolation in much the same way as for 2D shapes. Specifically,
we can derive 3D constraints from the vertex positions and surface
normals of a polygonal representation of an object. Let (x,y,z) and
(nx,ny,nz) be the position and the surface normal at a vertex, re-
spectively. Then a boundary constraint is placed at (x,y,z) and a
normal constraint is placed at (x− knx,y− kny,z− knz), where k is
some small value. We use a value of k = 0.01 for models that fit
within a unit cube for the results shown in this paper. All of the 3D
models that we transform in this paper were constructed by build-
ing an implicit function in this manner. Note that we can use this
method to build an implicit function whenever we have a collection
of points and normals— polygon connectivity is not necessary.

Now that we can construct smooth implicit functions for both
two- and three-dimensional shapes, we turn our attention to shape
transformation. It would be possible to create variational implicit
functions for each of two given shapes and then linearly interpo-
late between these functions to create a shape transformation se-
quence. Instead, however, we will examine an even better way of
performing shape transformation by generalizing the implicit func-
tion building methods of this section.

5 Unifying Function Creation and Inter-
polation

The key to our shape transformation approach is to represent the
entire sequence of shapes with a single implicit function. To do so,
we need to work in one higher dimension than the given shapes.
For 2D shapes, we will construct an implicit function in 3D that
represents our two given shapes in two distinct parallel planes. This
is actually simple to achieve now that we know how to use scattered
data interpolation to create an implicit function.

5.1 Two-Dimensional Shape Transformation

Given two shapes in the plane, assume that we have created a set
of boundary and normal constraints for each shape, as described
in Section 4. Instead of using each set of constraints separately to
create two different 2D implicit functions, we will embed all of the
constraints in 3D. We do this by adding a third coordinate value
to the location of each boundary and normal constraint. For those
constraints for the first shape, we set the new coordinate t for all
constraints to t = 0. For the second shape, all of the new coordinate
values are set to t = tmax (some non-zero value). Although we have
added a third dimension to the locations of the constraints, the val-
ues that are to be interpolated remain unchanged for all constraints.

Once we have placed the constraints of both shapes into 3D,
we invoke 3D variational interpolation to create a single scalar-
valued function over R3. If we take a slice of this function in the
plane t = 0, we find an implicit function that takes on the value
zero exactly at the boundary constraints for our first shape. In this
plane, our function describes the first shape. Similarly, in the plane
t = tmax this function gives the second shape. Parallel slices at loca-
tions between these two planes (0 < t < tmax) represent the shapes
of our shape transformation sequence. Figure 1 illustrates that the
collection of intermediate shapes are all just slices through a surface
in 3D that is created by variational interpolation.

Figure 3 (bottom) shows the sequence of shapes created us-
ing this variational approach to shape transformation. Topology
changes (e.g. the addition or removal of holes) come “for free”,
without any human guidance or algorithmic complications. Notice
that all of the intermediate shapes have smooth boundaries, without
pinches. Sharp features can arise only momentarily when there is
a change in topology such as when two parts join. Figure 5 shows
two more shape transformations that use this approach and that also
incorporate warping. Warping is an another degree of control that
may be added to any shape transformation technique, and is in fact

Figure 5: Two shape transformation sequences (using the varia-
tional implicit technique) that incorporate warping.

338
16

Computer Graphics Proceedings, Annual Conference Series, 1999

an orthogonal issue to those of implicit function creation and inter-
polation. Although it is not a focus of our research, for complete-
ness we briefly describe warping in the appendix.

Why has this implicit function building method not been tried
using other ways of creating implicit functions? Why not, for
example, build a signed distance function in one higher dimen-
sion? Because a complete description of an object’s boundary is
required in order to build a signed distance function. When we em-
bed our two shapes into a higher dimension, we only know a piece
of the boundary of our desired higher-dimensional shape, namely
the cross-sections that match the two given objects. In contrast, a
complete boundary representation is not required when using varia-
tional interpolation to create an implicit function. Variational inter-
polation creates plausible function values in regions where we have
no information, and especially in the “unknown” region between
the two planes that contain all of our constraints. This plausibility
of values comes from the smooth nature of the functions that are
created by the variational approach.

5.2 Three-Dimensional Shape Transformation

Just as we create a 3D function to create a transformation between
2D shapes, we can move to 4D in order to create a sequence be-
tween 3D shapes. We perform shape interpolation between two
3D objects using boundary and normal constraints for each shape.
We place the constraints from two 3D objects into four dimensional
space, just as we placed constraints from 2D contours into 3D. Sim-
ilar to contour interpolation, the constraints are separated from one
another in the fourth dimension by some specified distance. We
place all the constraints from the first object at t = 0, and the con-
straints from the second object are placed at t = tmax, where tmax is
the given separation distance. We then create a 4D implicit func-
tion using variational interpolation. An intermediate shape between
the two given shapes is found by extracting the isosurface of a 3D
“slice” (actually a volume) of the resulting 4D function.

Figure 6 shows two 3D shape transformation sequence that were
constructed using this method. To extract these surfaces we use
code published by Bloomenthal that begins at a seed location on the
surface of a model and only evaluates the implicit function at points
near previously visited locations [4]. This is far more efficient than
sampling an entire volume of the implicit function and then ex-
tracting an isosurface from the volume. The matrix solution for the
transformation sequence of Figure 6 (left) required 13.5 minutes,
and each isosurface in the sequence took approximately 2.3 min-
utes to generate on an SGI Indigo2 with a 195 MHz R10000 pro-
cessor. Figure 6 (right) shows a transformation between 3D shapes
that used warping to align features.

6 Surface Reconstruction from Contours

So far we have only considered shape transformation between pairs
of objects. In medical reconstruction, however, it is often neces-
sary to create a surface from a large number of parallel 2D slices.
Can’t we just perform shape interpolation between pairs of slices
and stack the results together to create one surface in 3D? Although
this method will create a continuous surface, it is almost certain
to produce a shape that has surface normal discontinuities at the
planes of the original slices. In the plane of slice i, the surface cre-
ated between slice pairs i−1 and i will usually not agree in surface
normal with the surface created between slices i and i + 1. Nearly
all contour interpolation methods consider only pairs of contours at
any one time, and thus suffer from such discontinuities. (A notable
exception is [1]).

To avoid discontinuities in surface normal, we must use infor-
mation about more than just two slices at a given time. We can
accomplish this using a generalization of the variational approach
to shape transformation. Assume that we begin with k sets of con-
straints, one set for each 2D data slice. Instead of considering the
contours in pairs, we place the constraints for all of the k slices into

Figure 6: 3D shape transformation sequences.

3D simultaneously. Specifically, the constraints of slice i are placed
in the plane z = si, where s is the spacing between planes. Once
the constraints from all slices have been placed in 3D, we invoke

339
17

ACM SIGGRAPH 99, Los Angeles, California, August 8–13, 1999

Figure 7: Reconstruction of hip joint from contours. Top row shows the five parallel slices used and the final surface. Bottom row shows
intersecting contours and the more detailed surface that is created.

variational interpolation once to create a single implicit function in
3D. The zero-valued isosurface exactly passes through each con-
tour of the data. Due to the smooth nature of variational interpola-
tion, the gradient of the implicit function is everywhere continuous.
This means that surface normal discontinuities are rare, appearing
in pathological situations when the gradient vanishes such as when
two features just barely touch. Figure 7 (top row) illustrates the
result of this contour interpolation approach. The hip joint recon-
struction in the upper right was created from the five slices shown
at the upper left.

A side benefit of using the variational implicit function method
is that it produces smoothly rounded caps on the ends of surfaces.
Notice that in Figure 7 (top left) that the reconstructed surface ex-
tends beyond the constraints in the positive and negative z direction
(the direction of slice stacking). This “rounding off” of the ends
is a natural side effect of variational interpolation, and need not be
explicitly specified.

6.1 Non-Parallel Contours

In the previous section, we only considered placing constraints
within planes that are all parallel to one another. There is noth-
ing special about any particular set of planes, however, once we
are specifying constraints in 3D. We can mix together constraints
that are taken from planes at any angle whatsoever, so long as we
know the relative positions of the planes (and thus the constraints).
Most contour interpolation procedures cannot integrate data taken
from slices in several directions, but the variational approach allows
complete freedom in this regard. Figure 7 (lower row) shows sev-
eral contours that are placed perpendicular to one another, and the
result of using variational interpolation on the group of constraints
from these contours.

6.2 Between-Contour Spacing

Up to this point we have not discussed the separating distance s
between the slices that contain the contour data. This separating
distance has a concrete meaning in medical shape reconstruction
from 2D contours. Here we know the actual 3D separation between
the contours from the data capture process. This “natural” distance
is the separating distance s that should be used when reconstruct-
ing the surface using variational interpolation. Upon reflection, it
is odd that some contour interpolation methods do not make use of
the data capture distance between slices. In some cases a medical
technician will deliberately vary the spacing between data slices in
order to capture more data in a particular region of interest. Us-
ing variational interpolation, we may incorporate this information

about varying separation distances into the surface reconstruction
process.

For both special effects production and for computer aided de-
sign, the distance between the separating planes can be thought of
as a control knob for the artist or designer. If the distance is small,
only pairs of features from the two shapes that are very close to one
another will be preserved through all the intermediate shapes. If
the separation distance is large, the intermediate shape is guided by
more global properties of the two shapes. In some sense, the sep-
arating distance specifies whether the shape transformation is local
or global in nature. The separation distance is just one control knob
for the user, and in the next section we will explore another user
control.

7 Influence Shapes

In this section we present a method of controlling shape transfor-
mation by introducing an influence shape. The idea to use addi-
tional objects as controls for shape transformation was introduced
by Rossignac and Kaul [24]. Such intermediate shape control can
be performed in a natural way using variational interpolation. The
key is to step into a still higher dimension when performing shape
transformation.

Recall that to create a transformation sequence between two
given shapes we added one new dimension, called t earlier. We
can think of the two shapes as being two points that are separated
along the t dimension, and these two points are connected by a line
segment that joins the two points along this dimension. If we be-
gin with three shapes, however, we can in effect place them at the
three points of a triangle. In order to do so we need not just one
additional dimension but two, call them s and t.

As an example, we may begin with three different 3D shapes
A, B and C. To each constraint that describes one of the shapes,
we can add two new coordinates, s and t. Constraints from shape
A at (x,y,z) are placed at (x,y,z,0,0), constraints from shape
B are placed at (x,y,z,1,0) and shape C constraints are placed
at (x,y,z,1/2,1/2). Variational interpolation based on these 5-
dimensional constraints results in a 5D implicit function. Three-
dimensional slices of this function along the s-dimension between
0 and 1 are simply shape sequences between shapes A and B when
the t-dimension value is fixed at zero. If, however, the t-dimension
value is allowed to become positive as s varies from 0 to 1, then
the intermediate shapes will take on some of the characteristics of
shape C. In fact, the 5D implicit function actually captures an entire
family of shapes that are various blends between the three shapes.
Figure 8 illustrates some members of such a family of shapes.

340
18

Computer Graphics Proceedings, Annual Conference Series, 1999

Influence Shape

Final ShapeStart Shape

s

t

Figure 8: Sequence between star and knot can be influenced by a torus (the influence shape) if the path passes near the torus in the five-
dimensional space.

There is no reason to stop at three shapes. It is possible to place
four shapes at the corners of a quadrilateral, five shapes around a
pentagon, and so on. If we wish to use four shapes, then placing
the constraints at the corners of a quadrilateral using two additional
dimensions would not allow us to produce a shape that was arbi-
trary mixtures between the shapes. In order to do so, we can place
the constraints in yet a higher dimension, in effect placing the four
shapes at the corners of a tetrahedron in N + 3 dimensions, where
N is the dimension of the given shapes.

There are two related themes that guide our technique for shape
transformation. The first is that shape transformation should
be thought of as a shape-creation problem in a higher dimen-
sion. The second theme is that better shape transformation se-
quences are produced when all of the problem constraints are solved
simultaneously— in our case by using variational interpolation. In-
fluence shapes are the result of taking these ideas to an extreme.

8 Conclusions and Future Work

Our new approach uses variational interpolation to produce one im-
plicit function that describes an entire sequence of shapes. Specific
characteristics of this approach include:

• Smooth intermediate shapes

• Shape transformation in any number of dimensions

• Analytic solutions that are free of polygon and voxel artifacts

• Continuous surface normals for contour interpolation

• Contour slices may be at any orientation, even intersecting

This approach provides two new controls for creating shape
transformation sequences:

• Separation distance gives local/global interpolation tradeoff

• May use influence shapes to control a transformation

The approach we have presented in this paper re-formulates the
shape interpolation problem as an interpolation problem in one
higher dimension. In essence, we treat the “time” dimension just
like another spatial dimension. We have found that using the vari-
ational interpolation method produces excellent results, but the
mathematical literature abounds with other interpolation methods.
An exciting avenue for future work is to investigate what other in-
terpolation techniques can also be used to create implicit functions
for shape transformation. Another issue is whether shape transfor-
mation methods can be made fast enough to allow a user interactive
control. Finally, how might surface properties such as color and
texture be carried through intermediate objects?

9 Acknowledgements

This work owes a good deal to Andrew Glassner for getting us in-
terested in the shape transformation problem. We thank our col-
leagues and the anonymous reviewers for their helpful suggestions.
This work was funded by ONR grant N00014-97-1-0223.

References

[1] Barequet, Gill, Daniel Shapiro and Ayellet Tal, “History Considera-
tion in Reconstructing Polyhedral Surfaces from Parallel Slices,” Pro-
ceedings of Visualization ’96, San Francisco, California, Oct. 27 –
Nov. 1, 1996, pp. 149–156.

[2] Barr, Alan H., “Global and Local Deformations of Solid Primitives,”
Computer Graphics, Vol. 18, No. 3 (SIGGRAPH 84), pp. 21–30.

[3] Beier, Thaddeus and Shawn Neely, “Feature-Based Image Metamor-
phosis,” Computer Graphics, Vol. 26, No. 2 (SIGGRAPH 92), July
1992, pp. 35–42.

[4] Bloomenthal, Jules, “An Implicit Surface Polygonizer,” in Graphics
Gems IV, edited by Paul S. Heckbert, Academic Press, 1994, pp. 324–
349.

[5] Bookstein, Fred L., “Principal Warps: Thin Plate Splines and the De-
composition of Deformations,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, Vol. 11, No. 6, June 1989, pp. 567–585.

[6] Celniker, George and Dave Gossard, “Deformable Curve and Surface
Finite-Elements for Free-Form Shape Design,” Computer Graphics,
Vol. 25, No. 4 (SIGGRAPH 91), July 1991, pp. 257–266.

341
19

ACM SIGGRAPH 99, Los Angeles, California, August 8–13, 1999

[7] Cohen-Or, Daniel, David Levin and Amira Solomovici, “Three Di-
mensional Distance Field Metamorphosis,” ACM Transactions on
Graphics, 1997.

[8] Duchon, Jean, “Splines Minimizing Rotation-Invariant Semi-Norms
in Sobolev Spaces,” in Constructive Theory of Functions of Several
Variables, Lecture Notes in Mathematics, edited by A. Dolb and B.
Eckmann, Springer-Verlag, 1977, pp. 85–100.

[9] Duncan, Jody, “A Once and Future War,” Cinefex, No. 47 (entire issue
devoted to the film Terminator 2), August 1991, pp. 4–59.

[10] Fuchs, H., Z. M. Kedem and S. P. Uselton, “Optimal Surface Recon-
struction from Planar Contours,” Communications of the ACM, Vol.
20, No. 10, October 1977, pp. 693–702.

[11] Golub, Gene H. and Charles F. Ban Loan, Matrix Computations, John
Hopkins University Press, 1996.

[12] Gregory, Arthur, Andrei State, Ming C. Lin, Dinesh Manocha, Mark
A. Livingston, “Feature-based Surface Decomposition for Correspon-
dence and Morphing between Polyhedra”, Proceedings of Computer
Animation, Philadelphia, PA., 1998.

[13] He, Taosong, Sidney Wang and Arie Kaufman, “Wavelet- Based Vol-
ume Morphing,” Proceedings of Visualization ’94, Washington, D. C.,
edited by Daniel Bergeron and Arie Kaufman, October 17-21, 1994,
pp. 85–92.

[14] Herman, Gabor T., Jingsheng Zheng and Carolyn A. Bucholtz,
“Shape-Based Interpolation,” IEEE Computer Graphics and Appli-
cations, Vol. 12, No. 3 (May 1992), pp. 69–79.

[15] Hugues, John F., “Scheduled Fourier Volume Morphing,” Computer
Graphics, Vol. 26, No. 2 (SIGGRAPH 92), July 1992, pp. 43–46.

[16] Kaul, Anil and Jarek Rossignac, “Solid- Interpolating Deformations:
Construction and animation of PIPs,” Proceedings of Eurographics
’91, Vienna, Austria, 2-6 Sept. 1991, pp. 493–505.

[17] Kent, James R., Wayne E. Carlson and Richard E. Parent, “Shape
Transformation for Polyhedral Objects,” Computer Graphics, Vol. 26,
No. 2 (SIGGRAPH 92), July 1992, pp. 47–54.

[18] Lerios, Apostolos, Chase Garfinkle and Marc Levoy, “Feature-Based
Volume Metamorphosis,” Computer Graphics Proceedings, Annual
Conference Series (SIGGRAPH 95), pp. 449–456.

[19] Levin, David, “Multidimensional Reconstruction by Set-valued Ap-
proximation,” IMA J. Numerical Analysis, Vol. 6, 1986, pp. 173–184.

[20] Litwinowicz, Peter and Lance Williams, “Animating Images with
Drawings,” Computer Graphics Proceedings, Annual Conference Se-
ries (SIGGRAPH 94), pp. 409–412.

[21] Lorenson, William and Harvey E. Cline, “Marching Cubes: A High
Resolution 3-D Surface Construction Algorithm,” Computer Graph-
ics, Vol. 21, No. 4 (SIGGRAPH 87), July 1987, pp. 163–169.

[22] Meyers, David and Shelley Skinner, “Surfaces From Contours: The
Correspondence and Branching Problems,” Proceedings of Graphics
Interface ’91, Calgary, Alberta, 3-7 June 1991, pp. 246–254.

[23] Payne, Bradley A. and Arthur W. Toga, “Distance Field Manipulation
of Surface Models,” IEEE Computer Graphics and Applications, Vol.
12, No. 1, January 1992, pp. 65–71.

[24] Rossignac, Jarek and Anil Kaul, “AGRELs and BIPs: Metamorphosis
as a Bezier Curve in the Space of Polyhedra,” Proceedings of Euro-
graphics ’94, Oslo, Norway, Sept. 12–16, 1994, pp. 179–184.

[25] Sederberg, Thomas W. and Eugene Greenwood, “A Physically Based
Approach to 2-D Shape Blending,” Computer Graphics, Vol. 26, No.
2 (SIGGRAPH 92), July 1992, pp. 25–34.

[26] Sederberg, Thomas W. and Scott R. Parry, “Free-Form Deformations
of Solid Geometric Models,” Computer Graphics, Vol. 20, No. 4
(SIGGRAPH 86), pp. 151–160.

[27] Turk, Greg and James F. O’Brien, “Variational Implicit Surfaces,”
Tech Report GIT-GVU-99-15, Georgia Institute of Technology, May
1999, 9 pages.

[28] Wolberg, George, Digital Image Warping, IEEE Computer Society
Press, Los Alamitos, California 1990.

10 Appendix: Warping

Warping is a commonly used method of providing user control
of shape interpolation. Although warping is not a focus of our
research, for the sake of completeness we describe below how
warping may be used together with our shape transformation tech-
nique. Research on warping (sometimes called deformation) in-
clude [2, 26, 28, 3, 18, 7].

Figure 9: The extreme left and right shapes in the top row have been
warped before creating the upper shape transformation sequence.
The lower row is an un-warped version of this sequence that gives
the final transformation from an X to O.

For symmetry, we choose to warp each shape “half-way” to the
other shape. Given a set of user-supplied corresponding points be-
tween two shapes A and B, we construct two displacement warp
functions wA and wB. The function wA specifies what values to add
to locations on shape A in order to warp it half-way to shape B, and
the warping function wB warps B half of the way to A.

In what follows, we will describe the warping process for two-
dimensional shapes. Let {a1,a2, . . . ,ak} be a set of points on
shape A, and let {b1,b2, . . . ,bk} be the corresponding points on
B. We construct the two functions wA and wB such that wA(ai) =
(bi − ai)/2 and wB(bi) = (ai −bi)/2 hold for all i. Constructing
these functions is another example of scattered data interpolation
which we can solve using variational techniques. For 2D shapes,
if ai = (ax

i ,a
y
i) and bi = (bx

i ,b
y
i), then the x component wx

Aof the
displacement warp wA has k constraints at the positions ai with
values (bx

i − ax
i)/2. We invoke variational interpolation to satisfy

these constraints, and do the same to construct the y component of
the warp. The function wB is constructed similarly. This is not
a new technique, and researchers who use thin-plate techniques to
perform shape warping include [5, 20] and others.

In order to combine warping with shape transformation, we use
these functions to displace all of the boundary constraints of the
given shapes. These displaced boundary constraints are embedded
in 3D (as described in Section 5) and then variational interpola-
tion is used to create the implicit function that describes the entire
shape transformation sequence. The result of this process is a three-
dimensional implicit function, each slice of which is an intermedi-
ate shape between two warped shapes. The top row of Figure 9
shows such warped intermediate shapes. We can think of the two
“ends” of this implicit function (at t = 0 and t = tmax) as being
warped versions of our original shapes. In order to match the two
original shapes, the surface of this 3D implicit function needs to be
unwarped. To simplify the equations, assume that the value of tmax
is 2. If t ≤ 1 the unwarping function u(x,y,t) is:

u(x,y,t) = (x +(1− t)wx
A(x,y),y+(1− t)wy

A(x,y),t) (4)

If t > 1 then the unwarping function is:

u(x,y,t) = (x +(t −1)wx
B(x,y),y+(t −1)wy

B(x,y),t) (5)

At the extreme of t = 0, the warp u(x,y,t) un-does the warping
we used for the first shape. At t = 2, the function u(x,y,t) reverses
the warping used for the second shape. When t = 1 (the middle
shape in the sequence), no warp is performed. The bottom sequence
of shapes in Figure 9 shows the result of the entire shape transfor-
mation process that includes warping. Both sequences in Figure 5
were created using warping in addition to shape transformation.

Although we have described the warping process for 2D shapes,
the same method may be used for shape transformation between 3D
shapes. For Figure 6 (right), warping was used to align the bunny
ears to the points of the star.

342
20

Modelling with Implicit Surfaces that Interpolate

GREG TURK
Georgia Institute of Technology
JAMES F. O’BRIEN
University of California, Berkeley

We introduce new techniques for modelling with interpolating implicit surfaces. This form of implicit surface was first used for
problems of surface reconstruction and shape transformation, but the emphasis of our work is on model creation. These implicit
surfaces are described by specifying locations in 3D through which the surface should pass, and also identifying locations that
are interior or exterior to the surface. A 3D implicit function is created from these constraints using a variational scattered
data interpolation approach, and the iso-surface of this function describes a surface. Like other implicit surface descriptions,
these surfaces can be used for CSG and interference detection, may be interactively manipulated, are readily approximated by
polygonal tilings, and are easy to ray trace. A key strength for model creation is that interpolating implicit surfaces allow the
direct specification of both the location of points on the surface and the surface normals. These are two important manipulation
techniques that are difficult to achieve using other implicit surface representations such as sums of spherical or ellipsoidal
Gaussian functions (“blobbies”). We show that these properties make this form of implicit surface particularly attractive for
interactive sculpting using the particle sampling technique introduced by Witkin and Heckbert. Our formulation also yields a
simple method for converting a polygonal model to a smooth implicit model, as well as a new way to form blends between objects.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface,
solid, and object representations

General Terms: Algorithms

Additional Key Words and Phrases: Implicit surfaces, thin-plate techniques, function interpolation, modeling

1. INTRODUCTION

The computer graphics, computer-aided design and computer vision literatures are filled with an amaz-
ingly diverse array of approaches to surface description. The reason for this variety is that there is no
single representation of surfaces that satisfies the needs of every problem in every application area.
This paper is about modelling with interpolating implicit surfaces, a surface representation that we
believe will be useful in several areas in 3D modeling. These implicit surfaces are smooth, exactly pass
through a set of given constraint points, and can describe closed surfaces of arbitrary topology.

In order to illustrate our basic approach, Figure 1 (left) shows an interpolating implicit curve, the 2D
analog of an interpolating implicit surface. The small open circles in this figure indicate the location
of constraints where the 2D implicit function must take on the value of zero. The single plus sign
corresponds to an additional constraint where the implicit function must take on the value of some

This work was funded under ONR grant N00014-97-0223.
Authors’ addresses: G. Turk, College of Computing, Room 257, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, GA
30332-0280; email: turk@cc.gatech.edu; J. F. O’Brien, Soda Hall, Mail Code 1776, EECS Computer Science Division, University
of California, Berkeley, Berkeley, CA 94720-1776; email: job@eecs.berkeley.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided
that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication,
and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
c© 2002 ACM 0730-0301/02/1000-0855 $5.00

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002, Pages 855–873.

21

856 • G. Turk and J. F. O’Brien

Fig. 1. Curves defined using interpolating implicit functions. The curve on the left is defined by four zero-valued and one positive,
constraint. This curve is refined by adding three new zero-valued constraints (shown in red at right).

arbitrary positive constant, which for this example is one. These constraints are passed along to a
scattered data interpolation routine that generates a smooth 2D function meeting the given constraints.
The desired curve is defined to be the locus of points at which the function takes on the value of
zero. The curve exactly passes through each of the zero-value constraints, and its defining function is
positive inside this curve and negative outside. For this 2D example, we use a variational technique
that minimizes the aggregate curvature of the function that it creates, and this technique for creating
a function is often referred to as thin-plate interpolation.

We can create surfaces in 3D in exactly the same way as the 2D curves in Figure 1. Zero-valued
constraints are defined by the modeler at 3D locations, and positive values are specified at one or more
places that are to be interior to the surface. A variational interpolation technique is then invoked that
creates a scalar-valued function over a 3D domain. The desired surface is simply the set of all points
at which this scalar function takes on the value zero. Figure 2 (left) shows a surface that was created
in this fashion by placing four zero-valued constraints at the vertices of a regular tetrahedron and
placing a single positive constraint in the center of the tetrahedron. The result is a nearly spherical
surface. More complex surfaces such as the branching shape in Figure 2 (right) can be defined simply
by specifying more constraints. Figure 3 shows an example of an interpolating implicit surface created
from polygonal data.

The remainder of this paper is organized as follows. In Section 2 we examine related work, including
implicit surfaces and thin-plate interpolation techniques. We describe in Section 3 the mathematical
framework for solving variational problems using radial basis functions. Section 4 presents three strate-
gies that may be used together with variational methods to create implicit surfaces. These strategies
differ in where they place the non-zero constraints. In Section 5 we show that interpolating implicit
surfaces are well suited for interactive sculpting. In Section 6 we present a new method of creating soft
blends between objects, based on interpolating implicits. Section 7 describes two rendering techniques,
one that relies on polygonal tiling and another based on ray tracing. In Section 8 we compare interpo-
lating implicit surfaces with traditional thin-plate surface modeling and with implicit functions that
are created using ellipsoidal Gaussian functions. Finally, Section 9 indicates potential applications and
directions for future research.
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

22

Modelling with Implicit Surfaces that Interpolate • 857

Fig. 2. Surfaces defined by interpolating implicit functions. The left surface is defined by zero-valued constraints at the corners
of a tetrahedron and one positive constraint in its center. The branching surface at the right was created using constraints from
the vertices of the inset polygonal object.

Fig. 3. Polygonal surface of a human fist with 750 vertices (left) and an interpolating implicit surface created from the polygons
(right).

2. BACKGROUND AND RELATED WORK

Interpolating implicit surfaces draw upon two areas of modeling: implicit surfaces and thin-plate inter-
polation. In this section we briefly review work in these two sub-areas. Interpolating implicit surfaces
are not new to graphics, and at the close of this section we describe earlier published methods of creating
interpolating implicit surfaces.

2.1 Implicit Surfaces

An implicit surface is defined by an implicit function, a continuous scalar-valued function over the
domain R3. The implicit surface of such a function is the locus of points at which the function takes on
the value zero. For example, a unit sphere may be defined using the implicit function f (x) = 1−|x|, for

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

23

858 • G. Turk and J. F. O’Brien

points x ∈ R3. Points on the sphere are those locations at which f (x) = 0. This implicit function takes
on positive values inside the sphere and is negative outside the surface, as will be the convention in
this paper.

An important class of implicit surfaces are the blobby or meta-ball surfaces [Blinn 1982; Nishimura
et al. 1985]. The implicit functions of these surfaces are the sum of radially symmetric functions that
have a Gaussian profile. Here is the general form of such an implicit function:

f (x) = −t +
n∑

i=1

gi(x) (1)

In the above equation, a single function gi describes the profile of a “blobby sphere” (a Gaussian
function) that has a particular center and standard deviation. The bold letter x represents a point in
the domain of our implicit function, and in this paper we will use bold letters to represent such points,
both in 2D and 3D. The value t is the iso-surface threshold, and it specifies one particular surface from
a family of nested surfaces that are defined by the sum of Gaussians. When the centers of two blobby
spheres are close enough to one another, the implicit surface appears as though the two spheres have
melted together. A typical form for a blobby sphere function gi is the following:

gi(x) = e|x−ci |2/σ 2
i (2)

In this equation, the constant σi specifies the standard deviation of the Gaussian function, and thus
is the control over the radius of a blobby sphere. The center of a blobby sphere is given by ci. Evaluating
an exponential function is computationally expensive, so some authors have used piecewise polynomial
expressions instead of exponentials to define these blobby sphere functions [Nishimura et al. 1985;
Wyvill et al. 1986]. A greater variety of shapes can be created with the blobby approach by using
ellipsoidal rather than spherical functions.

Another important class of implicit surfaces are the algebraic surfaces. These are surfaces that are
described by polynomial expressions in x, y and z. If a surface is simple enough, it may be described
by a single polynomial expression. A good deal of attention has been devoted to this approach, and
we recommend Taubin [1993] and Keren and Gotsman [1998] as starting points in this area. Much of
the work on this method has been devoted to fitting an algebraic surface to a given collection of points.
Usually it is not possible to interpolate all of the data points, so error minimizing techniques are sought.
Surfaces may also be described by piecing together many separate algebraic surface patches, and here
again there is a large literature on the subject. Good introductions to these surfaces may be found in the
chapters by Bajaj and Rockwood in Bloomenthal [1997]. It is easier to create complex surfaces using
a collection of algebraic patches rather than using a single algebraic surface. The tradeoff, however, is
that a good deal of machinery is required to create smooth joins across patch boundaries.

We have only described some of the implicit surface representations that are most closely related to
our own work. There are many other topics within the broad area of implicit surfaces, and we refer the
interested reader to the excellent book by Bloomenthal and his co-authors, Bloomenthal [1997].

2.2 Thin-Plate Interpolation

Thin-plate spline surfaces are a class of height fields that are closely related to the interpolating implicit
surfaces of this paper. Thin-plate interpolation is one approach to solving the scattered data interpolation
problem. The two-dimensional version of this problem can be stated as follows: Given a collection of k
constraint points {c1, c2, . . . , ck} that are scattered in the x y-plane, together with scalar height values
at each of these points {h1, h2, . . . , hk}, construct a “smooth” surface that matches each of these heights
at the given locations. We can think of this solution surface as a scalar-valued function f (x) so that
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

24

Modelling with Implicit Surfaces that Interpolate • 859

f (ci) = hi, for 1 ≤ i ≤ k. If we define the word smooth in a particular way, there is a unique solution
to such a problem, and this solution is the thin-plate interpolation of the points. Consider the energy
function E(f) that measures the smoothness of a function f :

E(f) =
∫
Ä

f 2
xx(x)+ 2 f 2

xy(x)+ f 2
yy(x) dx (3)

The notation fxx means the second partial derivative in the x direction, and the other two terms
are similar partial derivatives, one of them mixed. This energy function is basically a measure of
the aggregate curvature of f (x) over the region of interest Ä (a portion of the plane). Any creases
or pinches in a surface will result in a larger value of E. A smooth function that has no such re-
gions of high curvature will have a lower value of E. Note that because there are only squared terms
in the integral, the value for E can never be negative. The thin-plate solution to an interpolation
problem is the function f (x) that satisfies all of the constraints and that has the smallest possi-
ble value of E. Note that thin-plate surfaces are height fields, and thus they are in fact parametric
surfaces.

This interpolation method gets its name because it is much like taking a thin sheet of metal, laying
it horizontally and bending it so that it just touches the tips of a collection of vertical poles that are
set at the positions and heights given by the constraints of the interpolation problem. The metal plate
resists bending so that it smoothly changes its height in the positions between the poles. This springy
resistance is mimicked by the energy function E. Thin-plate interpolation is often used in the computer
vision domain, where there are often sparse surface constraints [Grimson 1983; Terzopoulos 1988]. The
above curvature minimization process is sometimes referred to as regularization, and can be thought
of as an additional constraint that selects a unique surface out of an infinite number of surfaces that
match a set of given height constraints. Solving such constrained problems draws from a branch of
mathematics called the variational calculus, thus thin-plate techniques are sometimes referred to as
variational methods.

The scattered data interpolation problem can be formulated in any number of dimensions. When
the given points ci are positions in n-dimensions rather than in 2D, this is called the n-dimensional
scattered data interpolation problem. There are appropriate generalizations to the energy function and
to thin-plate interpolation for any dimension. In this paper we will make use of variational interpolation
in two and three dimensions.

2.3 Related Work on Implicit Surfaces

The first publication on interpolating implicits of which we are aware is that of Savchenko et al. [1995].
We consider this to be a pioneering paper in implicit surfaces, and feel it deserves to be known more
widely than it is at present. Their research was on the creation of implicit surfaces from measured data
such as range data or contours. Their work did not, however, describe techniques for modelling. Their
approach to implicit function creation is similar to our method in the present paper in that both solve a
linear system to get the weights for radial basis functions. The work of Savchenko et al. differs from our
own in that they use a carrier solid to suggest what part of space should be interior to the surface that is
being created. We believe that the three methods that we describe for defining the interior of a surface
in Section 4 of this paper give more user control than a carrier solid and are thus more appropriate for
modelling.

The implicit surface creation methods described in this paper are an outgrowth of earlier work in
shape transformation by Turk and Turk and O’Brien [1999]. They created implicit functions in n+ 1
dimensions to interpolate between pairs of n-dimensional shapes. These implicit functions were created
using the normal constraint formulation of interpolating implicit surfaces, as described in Section 4.3 of

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

25

860 • G. Turk and J. F. O’Brien

this paper. The present paper differs from that of Turk and O’Brien [1999] in its introduction of several
techniques for defining interpolating implicit surfaces that are especially useful for model creation.

Recently, techniques have developed that allow the methods discussed above to be applied to systems
with large numbers of constraints [Morse et al. 2001; Carr et al. 2001]. The work of Morse et al. uses
Gaussian-like compactly supported radial basis functions to accelerate the surface building process;
they are able to create surfaces that have tens of thousands of constraints. Carr et al. use fast evaluation
methods to reconstruct surfaces using up to a half millions basis functions. They use the radial basis
function φ(x) = |x|, the biharmonic basis function. Both of these improvements for creating surfaces
with many constraints are complementary to the work of the present paper, and the new techniques
that we describe in Sections 4, 5 and 6 should work gracefully with the methods in both of these
papers.

3. VARIATIONAL METHODS AND RADIAL BASIS FUNCTIONS

In this section we review the necessary mathematical background for thin-plate interpolation. This will
provide the tools that we will then use in Section 4 to create interpolating implicit surfaces.

The scattered data interpolation task as formulated above is a variational problem where the de-
sired solution is a function, f (x), that will minimize Equation 3 subject to the interpolation constraints
f (ci) = hi. There are several numerical methods that can be used to solve this type of problem. Two
commonly used methods, finite elements and finite differencing techniques, discretize the region of
interest, Ä, into a set of cells or elements and define local basis functions over the elements. The
function f (x) can then be expressed as a linear combination of the basis functions so that a solution
can be found, or approximated, by determining suitable weights for each of the basis functions. This
approach has been widely used for height-field interpolation and deformable models, and examples
of its use can be found in [Terzopoulos 1988; Szeliski 1990; Celniker and Gossard 1991; Welch and
Witkin 1994]. While finite elements and finite differencing techniques have proven useful for many
problems, the fact that they rely on discretization of the function’s domain is not always ideal. Prob-
lems that can arise due to discretization include visibly stair-stepped surfaces and the inability to
represent fine details. In addition, the cost of using such methods grows cubically with the desired
resolution.

An alternate approach is to express the solution in terms of radial basis functions centered at the
constraint locations. Radial basis functions are radially symmetric about a single point, or center, and
they have been widely used for function approximation. Remarkably, it is possible to choose these
radial functions in such a way that they will automatically solve differential equations, such as the one
required to solve Equation 3, subject to constraints located at their centers. For the 2D interplation
problem, Equation 3 can be solved using the biharmonic radial basis function:

φ(x) = |x|2 log(|x|) (4)

This is commonly know as the thin-plate radial basis function. For 3D interpolation, one commonly
used radial basis function is φ(x) = |x|3, and this is the basis function that we use. We note that Carr
et al. [2001] used the basis function φ(x) = |x|. Duchon [1977] did much of the early work on variational
interpolation, and the report by Girosi, Jones and Poggio is a good entry point into the mathematics of
variational interpolation [Girosi et al. 1993].

Using the appropriate radial basis functions, we can write the interpolation function in this form:

f (x) =
k∑

j=1

wjφ(x− c j)+ P (x) (5)

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

26

Modelling with Implicit Surfaces that Interpolate • 861

In the above equation, c j are the locations of the constraints, wj are the weights, and P (x) is a
degree one polynomial that accounts for the linear and constant portions of f . Solving for the weights
wj and the coefficients of P (x) subject to the given constraints yields a function that both interpolates
the constraints and minimizes Equation 3. The resulting function exactly interpolates the constraints
(if we ignore numerical precision issues), and is not subject to approximation or discretization errors.
Also, the number of weights to be determined does not grow with the size of the region of interest Ä.
Rather, it is only dependent on the number of constraints.

To solve for the set of wj that will satisfy the interpolation constraints, we begin with the criteria
that the surface must interpolate our constraints:

hi = f (ci) (6)

We now substitute the right side of Equation 5 for f (ci) to give us:

hi =
k∑

j=1

wjφ(ci − cj)+ P (ci) (7)

Since the above equation is linear with respect to the unknowns, wj , and the coefficients of P (x), it
can be formulated as a linear system. For interpolation in 3D, let ci = (cx

i , c y
i , cz

i) and let φi j = φ(ci−c j).
Then this linear system can be written as follows:



φ11 φ12 . . . φ1k 1 cx
1 c y

1 cz
1

φ21 φ22 . . . φ2k 1 cx
2 c y

2 cz
2

...
...

...
...

...
...

...
φk1 φk2 . . . φkk 1 cx

k c y
k cz

k

1 1 . . . 1 0 0 0 0
cx

1 cx
2 . . . cx

k 0 0 0 0
c y

1 c y
2 . . . c y

k 0 0 0 0
cz

1 cz
2 . . . cz

k 0 0 0 0





w1

w2

...
wk

p0

p1

p2

p3


=



h1

h2

...
hk

0
0
0
0


(8)

The sub-matrix in Equation 8 consisting of the φi j ’s is conditionally positive-definite on the subspace
of vectors that are orthogonal to the last four rows of the full matrix, so Equation 8 is guaranteed to have
a solution. We used symmetric LU decomposition to solve this system of equations for all of the examples
shown in this paper. Our implementation to set up the system, call the LU decomposition routine and
evaluate the interpolating function of Equation 5 for a given x consists of about 100 lines of commented
C++ code. This code plus the public-domain polygonalization routine described in Section 7.1 is all that
is needed to create interpolating implicit surfaces.

Two concerns that arise with such matrix systems are computation times and ill-conditioned systems.
For systems with up to a few thousand centers, including all of the examples in this paper, direct solution
techniques such as LU decomposition and SVD are practical. However as the system becomes larger,
the amount of work required to solve the system grows as O(k3). We have used direct solution methods
for systems with up to roughly 3,000 constraints. LU decomposition becomes impractical for more
constraints than this. We are pleased that other researchers, notably the authors of [Morse et al. 2001;
Carr et al. 2001], have begun to address this issue of computational complexity.

As the number of constraints grows, the condition number of the matrix in equation 8 is also likely
to grow, leading to instability for some solution methods. For the systems we have worked with,

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

27

862 • G. Turk and J. F. O’Brien

ill-conditioning has not been a problem. If problems arise for larger systems, variational interpola-
tion is such a well-studied problem that methods exist for improving the conditioning of the system of
equations (see Dyn [1987]).

4. CREATING INTERPOLATING IMPLICIT SURFACES

With tools for solving the scattered data interpolation problem in hand, we now turn our attention to
creating implicit functions. In this section we will examine three ways in which to define a interpolating
implicit surface. Common to all three approaches, is the specification of zero-valued constraints through
which the surface must pass. The three methods differ in specifying where the implicit function takes
on positive and negative values. These methods are based on using three different kinds of constraints:
interior, exterior, and normal. We will look at creating both 2D interpolating implicit curves and 3D
interpolating implicit surfaces. The 2D curve examples are for illustrative purposes, and our actual
goal is the creation of 3D surfaces.

4.1 Interior Constraints

The left portion of Figure 1 (earlier in this paper) shows the first method of describing a interpolating
implicit curve. Four zero-valued constraints have been placed in the plane. We call such zero-value
constraints boundary constraints because these points will be on the boundary between the interior
and exterior of the shape that is being defined. In addition to the four boundary constraints, a single
constraint with a value of one is placed at the location marked with a plus sign. We use the term interior
constraint when referring to such a positive-valued constraint that helps to determine the interior of
the surface. We construct an implicit function from these five constraints simply by invoking the 2D
variational interpolation technique described in earlier sections. The interpolation method returns a
set of scalar coefficients wi that weight a collection of radially symmetric functions φ that are centered
at the constraint positions. The implicit curve shown in the figure is given by those locations at which
the variationally-defined function takes on the value zero. The function takes on positive values in-
side the curve and is negative at locations outside the curve. Figure 1 (right) shows a refinement of the
curve that is made by adding three more boundary constraints to the original set of constraints in the
left portion of the figure.

Why does an interior constraint surrounded by zero-valued constraints yield a function that is neg-
ative beyond the boundary constraints? The key is that the energy function is larger for functions
that take on positive values on both sides of a zero-valued constraint. Each boundary constraint acts
much like a see-saw. If we pull the surface up on one side of a boundary constraint (using an interior
constraint), then the other side tends to move down.

Creating surfaces in 3D is accomplished in exactly the same way as the 2D case. Zero-valued con-
straints are specified by the modeler as those 3D points through which the surfaces should pass, and
positive values are specified at one or more places that are to be interior to the surface. Variational
interpolation is then invoked to create a scalar-valued function over R3. The desired surface is simply
the set of all points at which this scalar function takes on the value zero. Figure 2 (left) shows a surface
that was created in this fashion by placing four zero-valued constraints at the vertices of a regular
tetrahedron and placing a single interior constraint in the center of the tetrahedron. The resulting
implicit surface is nearly spherical.

Figure 2 (right) shows a recursive branching object that is an interpolating implicit surface. The basic
building block of this object is a triangular prism. Each of the six vertices of a large prism specified
the location of a zero-valued constraint, and a single interior constraint was placed in the center of
this prism. Next, three smaller and slightly tilted prisms were placed atop the first large prism. Each
of these smaller prisms, like the large one, contributes boundary constraints at its vertices and has a
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

28

Modelling with Implicit Surfaces that Interpolate • 863

Fig. 4. Curves defined using surrounding exterior constraints. Just two zero-valued constraints yield an ellipse-like curve (on
the left). More constraints create a more complex curve (at right).

single interior constraint placed at its center. Each of the three smaller prisms had even smaller prisms
placed on top of them, and so on.

Why does this method of creating an implicit function create a smooth surface? We are creating the
scalar-valued function in 3D that matches our constraints, and that minimizes a 3D energy functional
similar to Equation 3. This energy functional selects a smoothly changing implicit function that matches
the constraints. The iso-surface that we extract from such a smoothly changing function will almost
always be smooth as well. It is not the case in general, however, that this iso-surface is also the minimum
of a curvature-based functional over surfaces. Satisfying the 3D energy functional does not give any
guarantee about the smoothness of the resulting 2D surface.

Placing one or more positive-valued constraints on the interior of a shape is an effective method
of defining interpolating implicit surfaces when the shape one wishes to create is well-defined. We
have found, however, that there is another approach that is even more flexible for interactive free-form
surface sculpting.

4.2 Exterior Constraints

Figure 4 illustrates a second approach to creating interpolating implicit functions. Instead of placing
positive-valued constraints inside a shape, negative-valued constraints can be placed on the exterior of
the shape that is being created. We call each such negative-valued constraint an exterior constraint. As
before, zero-valued constraints specify locations through which the implicit curve will pass. In Figure 4
(left), eight exterior constraints surround the region at which a curve is being created. As with positive-
valued constraints, the magnitude of the values is unimportant, and we use the value-negative one.
These exterior constraints, coupled with the curvature-minimizing nature of variational method, induce
the interpolation function to take on positive values interior to the shape outlined by the zero-valued
constraints. Even specifying just two boundary constraints defines a reasonable closed curve, as shown
by the ellipse-like curve at the left in Figure 4. More boundary constraints result in a more complex
curve, as shown on the right in Figure 4.

We have found that creating a circle or sphere of negative-valued constraints is the approach that is
best suited to interactive free-form design of curves and surfaces. Once these exterior constraints are
defined, the user is free to place boundary constraints in any location interior to this cage of exterior
constraints. Section 5 describes the use of exterior constraints for interactive sculpting.

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

29

864 • G. Turk and J. F. O’Brien

Fig. 5. Two curves defined using nearly identical boundary and normal constraints. By moving just a single normal constraint
(the north-west one, shown in red), the curve on the left is changed to that shown on the right.

4.3 Normal Constraints

For some applications we may have detailed knowledge about the shape that is to be modeled. In
particular, we may know approximate surface normals at many locations on the surface to be created.
In this case there is a third method of defining an interpolating implicit function that may be preferred
over the two methods described above, and this method was originally described in Turk and O’Brien
[1999]. Rather than placing positive or negative values far from the boundary constraints, we can
create constraints very close to the boundary constraints. Figure 5 shows this method in the plane. In
the left portion of this figure, there are six boundary constraints and in addition there are six normal
constraints. These normal constraints are positive-valued constraints that are placed very near the
boundary constraints, and they are positioned towards the center of the shape that is being created. A
normal constraint is created by placing a positive constraint a small distance in the direction−n, where
n is an approximate normal to the shape that we are creating. (Alternatively, we could choose to place
negative-valued constraints in the outward-pointing direction.) A normal constraint is always paired
with a boundary constraint, although not every boundary constraint requires a normal constraint.
The right part of Figure 5 shows that a normal constraint can be used to bend a curve at a given
point.

There are at least two ways in which a normal constraint might be defined. One is to allow a user
to hand-specify the surface normals of a shape that is being created. A second allows us to create
smooth surfaces based on polyhedral models. If we wish to create an interpolating implicit surface from
a polyhedral model, we simply need to create one boundary constraint and one normal constraint for
each vertex in the polyhedron. The location of a boundary constraint is given by the position of the vertex,
and the location of a normal constraint is given by moving a short distance in a direction opposite to the
surface normal at the vertex. We place normal constraints 0.01 units from the corresponding boundary
constraints for objects that fit within a unit cube. Figure 6 (right) shows an interpolating implicit surface
created in the manner just described from the polyhedral model in Figure 6 (left). This is a simple yet
effective way to create an everywhere smooth analytically defined surface. This stands in contrast to
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

30

Modelling with Implicit Surfaces that Interpolate • 865

Fig. 6. A polygonal surface (left) and the interpolating implicit surface defined by the 800 vertices and their normals (right).

Table I. Constraint Types
Constraint Types When to Use 2D Figure 3D Figure
Interior constraints Planned model construction Figure 1 Figure 2
Exterior constraints Interactive modelling Figure 4 Figures 7, 8, 10
Normal constraints Conversion from polygons Figure 5 Figures 3, 6, 9

the complications of patch stitching inherent in most parametric surface modeling approaches. Figure 3
is another example of converting polygons (a fist) to an implicit surface.

4.4 Review of Constraint Types

In this section we have seen three methods of creating interpolating implicit functions. These methods
are in no way mutually exclusive, and a user of an interactive sculpting program could well use a
mixture of these three techniques to define a single surface. Table I lists each of the three kinds of
constraints, when we believe each is appropriate to use, and which figures in this paper were created
using each of the methods.

5. INTERACTIVE MODEL BUILDING

Interpolating implicit surfaces seem ready-made for interactive 3D sculpting. In this section we will
describe how they can be gracefully incorporated into an interactive modeling program.

In 1994, Andrew Witkin and Paul Heckbert presented an elegant method for interactive manipulation
of implicit surfaces [Witkin and Heckbert 1994]. Their method uses two types of oriented particles that
lie on the surface of an implicitly defined object. One class of particles, the floaters, are passive elements
that are attracted to the surface of the shape that is being sculpted. Floaters repel one another in order
to evenly cover the surface. Even during large changes to the surface, a nearly constant density of
floaters is maintained by particle fissioning and particle death. A second type of particle, the control
point, is the method by which a user interactively shapes an implicit surface. Control points provide
the user with direct control of the surface that is being created. A control point tracks a 3D cursor
position that is moved by the user, and the free parameters of the implicit function are adjusted so
that the surface always passes exactly through the control point. The mathematical machinery needed

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

31

866 • G. Turk and J. F. O’Brien

Fig. 7. Interactive sculpting of interpolating implicit surfaces. The left image shows an initial configuration with four boundary
constraints (the red markers). The right surface is a sculpted torus.

to implement floaters and control points is presented clearly in Witkin and Heckbert’s paper, and the
interested reader should consult it for details.

The implicit surfaces used in Witkin and Heckbert’s modeling program are blobby spheres and blobby
cylinders. We have created an interactive sculpting program based on their particle sampling tech-
niques, but we use interpolating implicit surfaces instead of blobbies as the underlying shape descrip-
tion. Our implementation of floaters is an almost verbatim transcription of their equations into code.
The only change needed was to represent the implicit function as a sum of φ(x) = |x|3 radial basis
functions and to provide an evaluation routine for this function and its gradient. Floater repulsion,
fissioning, and death, work for interpolating implicits just as well as when using blobby implicit func-
tions. As in the original system, the floaters provide a means of interactively viewing an object during
editing that may even change the topology of the surface.

The main difference between our sculpting system and Witkin and Heckbert’s is that we use an en-
tirely different mechanism for direct interaction with a surface. Witkin/Heckbert control points provide
an indirect link between a 3D cursor and the free parameters of a blobby implicit function. We do not
make use of Witkin and Heckbert’s control particles in our interactive modelling program. Instead, we
simply allow users to create and move the boundary constraints of an interpolating implicit surface.
This provides a direct way to manipulate the surface.

We initialize a sculpting session with a simple interpolating implicit surface that is nearly spherical;
this is shown at the left in Figure 7. It is described by four boundary constraints at the vertices of a unit
tetrahedron (the thick red disks) and with eight exterior (negative) constraints surrounding these at
the corners of a cube with a side width of six. (The exterior constraints are not drawn.) A user is free to
drag any of the boundary constraint locations using a 3D cursor, and the surface follows. The user may
also create any number of new boundary constraints on the surface. The location of a new boundary
constraint is found by intersecting the surface with a ray that passes through the camera position and
the cursor. After a user creates or moves a boundary constraint, the matrix equation from Section 3 is
solved anew. The floaters are then moved and displayed. The right portion of Figure 7 shows a toroidal
surface that was created using this interactive sculpting paradigm. The interactive program repeatedly
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

32

Modelling with Implicit Surfaces that Interpolate • 867

Fig. 8. Changing a normal constraint. Left image shows the original surface, and right image shows the same surface after
changing a normal constraint (shown as a red spike).

executes the following steps:

1. Create or move constraints based on user interaction.
2. Solve new variational matrix equation.
3. Adjust floater positions (with floater birth and death).
4. Render floaters.

An important consequence of the matrix formulation given by Equation 8 is that adding a new
boundary constraint on the existing surface does not affect the surface shape at all. This is because
the implicit function already takes on the value of zero at the surface, so adding a new zero-valued
constraint on the surface will not alter the surface. Only when such a new boundary constraint is
moved, does it begin to affect the shape of the surface. This ability to retain the exact shape of a surface
while adding new boundary constraints is similar in spirit to knot insertion for polynomial spline curves
and surfaces. We do not know of any similar capability for blobby implicit surfaces.

In addition to control of boundary constraints, we also allow a user to create and move normal
constraints. By default, no normal constraint is provided for a newly created boundary constraint. At
the user’s request, a normal constraint can be created at any specified boundary constraint. The initial
direction of the normal constraint is given by the gradient of the current implicit function. The value for
such a constraint is given by the implicit function’s value at the constraint location. A normal constraint
is drawn as a spike that is fixed at one end to the disk of its corresponding boundary point. The user
may drag the free end of this spike to adjust the normal to the surface, and the surface follows this new
constraint. Figure 8 shows an example of changing a normal constraint during an interactive modelling
session.

What has been gained by using interpolating implicit functions instead of blobby spheres and cylin-
ders? First, the interpolating implicit approach is easier to implement because the optimization ma-
chinery for control points of blobby implicits is not needed. Second, the user has control over the surface
normal as well as the surface position. Finally, the user does not need to specify which implicit param-
eters are to be fixed and which are to be free at different times during the editing session. Using the
blobby formulation, the user must choose, at any given time, which parameters such as sphere centers,
radii of influence, and cylinder endpoints may be altered by moving a control point. With the variational

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

33

868 • G. Turk and J. F. O’Brien

formulation, the user is always changing the position of just a single boundary or normal constraint. We
believe that this direct control of the parameters of the implicit function is more natural and intuitive.
Witkin and Heckbert [1994] state the following:

Another result of this work is that we have discovered that implicit surfaces are slippery:
when you attempt to move them using control points they often slip out of your grasp.
(emphasis from the original paper)

In contrast to blobby implicits, we have found that interpolating implicit surfaces are not at all
slippery. Users easily grasp and re-shape these surfaces with no thought to the underlying parameters
of the model.

6. OBJECT BLENDING

A blend is a portion of a surface that smoothly joins two sub-parts of an object. One of the more useful
attributes of implicit surfaces is the ease with which they allow two objects to be blended together.
Simply summing together the implicit functions for two objects often gives quite reasonable results for
some applications. In some instances, however, traditional implicit surface methods have been found
to be problematic when creating certain kinds of blends. For example, it is difficult to get satisfactory
results when summing together the implicit functions for two branches and a trunk of a tree. The
problem is that the surface will bulge at the location where the trunk and the two branches join. Bulges
occur because the contribution of multiple implicit functions causes their sum to take on large values
in the blend region, and this results in the new function reaching the iso-surface threshold in locations
further away from the blend than is desirable. Several solutions have been proposed for this problem
of bulges in blends, but these methods are either computationally expensive or are fairly limited in
the geometry for which they can be used. For an excellent description of various blending methods, see
Chapter 7 of Bloomenthal [1997].

Interpolating implicit surfaces provide a new way in which to create blends between objects. Objects
that are blended using this new approach are free of the bulging problems found using some other
methods. Our approach to blending together surfaces is to form one large collection of constraints by
collecting together the constraints that define of all the surfaces to be blended. The new blended surface
is the surface defined by this new collection of constraints. It is important to note that simply using all
of the constraints from the original surfaces will usually produce poor results. The key to the success
of this approach is to throw out those constraints that would cause problems.

Consider the task of blending together two shapes A and B. If we used all of the constraints from both
shapes, the resulting surface is not likely to be what we wish. The task of selecting which constraints
to keep is simple. Let f A(x) and f B(x) be the implicit functions for shapes A and B respectively. We
will retain those constraints from object A that are outside of B. That is, a constraint from A with
position ci will be kept if f B(ci) < 0. All other constraints from A will be discarded. Likewise, we will
keep only those constraints from object B that are outside of object A. To create a blended shape, we
collect together all of the constraints that pass these two tests and form a new surface based on these
constraints.

This approach can used to blend together any number of objects. Figure 9 (left) shows three polygonal
tori that overlap one another in 3D. To blend these objects together, we first create a set of boundary
and normal constraints for each object, using the approach described in Section 4.3. We then keep
only those constraints from each object that are outside of each of the other two objects, as determined
by their implicit functions. Finally, we create a single implicit function using all of the constraints from
the three objects that were retained. Figure 9 (right) shows the result of this procedure. Notice that
there are no bulges in the locations where the tori meet.
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

34

Modelling with Implicit Surfaces that Interpolate • 869

Fig. 9. Three polygonal tori (left), and the soft union created with interpolating implicits (right).

7. RENDERING

In this section we examine two traditional approaches for rendering implicit surfaces that both perform
well for interpolating implicits.

7.1 Conversion to Polygons

One way to render an implicit surface is to create a set of polygons that approximate the surface and
then render these polygons. The topic of iso-surface extraction is well-studied, especially for regularly
sampled volumetric data. Perhaps the best known approach of this type is the Marching Cubes algo-
rithm [Lorensen and Cline 1987], but a number of variants of this method have been described since
the time of its publication.

We use a method of iso-surface extraction known as a continuation approach [Bloomenthal 1988] for
many of the figures in this paper. The models in Figure 2 and in the right images of Figures 6 and 9 are
collections of polygons that were created using the continuation method. This method first locates any
position that is on the surface to be tiled. This first point can be thought of as a single corner of a cube
that is one of an infinite number of cubes in a regular lattice. The continuation method then examines
the values of the implicit function at neighboring points on the cubic lattice and creates polygons within
each cube that the surface must pass through. The neighboring vertices of these cubes are examined in
turn, and the process eventually crawls over the entire surface defined by the implicit function. We use
the implementation of this method from Bloomenthal [1994] that is described in detail in Bloomenthal
[1988].

7.2 Ray Tracing

There are a number of techniques that may be used to ray trace implicit surfaces, and a review of these
techniques can be found in Hart [1993]. We have produced ray traced images of interpolating implicit
surfaces using a particular technique introduced by Hart [1997] that is known as sphere tracing. Sphere
tracing is based on the idea that we can find the intersection of a ray with a surface by traveling along
the ray in steps that are small enough to avoid passing through the surface. At each step along the
ray the method conservatively estimates the radius of a sphere that will not intersect the surface. We
declare that we are near enough to the surface when the value of f (x) falls below some tolerance ε. We

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

35

870 • G. Turk and J. F. O’Brien

Fig. 10. Ray tracing of interpolating implicit surfaces. The left image shows reflection and shadows of two implicit surfaces, and
the right image illustrates constructive solid geometry.

currently use a heuristic to determine the radius of the spheres during ray tracing. We sample the space
in and around our implicit surface at 2000 positions, and we use the maximum gradient magnitude over
all of these locations as the Lipschitz constant for sphere tracing. For extremely pathological surfaces,
this heuristic may fail, although it has worked well for all of our images. Coming up with a sphere
radius that is guaranteed not to intersect the surface is a good area for future research. We think it is
likely that other ray tracing techniques can also be successfully applied to ray tracing of interpolating
implicits, such as the LG-surfaces approach of Kalra and Barr [1989].

Figure 10 (left) is an image of two interpolating implicit surfaces that were ray traced using sphere
tracing. Note that this figure includes shadows and reflections. Figure 10 (right) illustrates constructive
solid geometry with interpolating implicit surfaces. The figure shows (from left to right) intersection and
subtraction of two implicit surfaces. This figure was created using standard ray tracing CSG techniques
as described in Roth [1982].

The rendering techniques of this section highlight a key point—interpolating implicit surfaces may
be used in almost all of the contexts in which other implicit formulations have been used. This new
representation may provide fruitful alternatives for a number of problems that use implicit surfaces.

8. COMPARISON TO RELATED METHODS

At this point it is useful to compare interpolating implicit surfaces to other representations of surface
geometry. Although they share similarities with existing techniques, interpolating implicits are distinct
from other forms of surface modeling. Because interpolating implicits are not yet well known, we provide
a comparison of them to two more well-known modelling techniques.

8.1 Thin-Plate Surface Reconstruction

The scientific and engineering literature abound with surface reconstruction based on thin-plate in-
terpolation. Aren’t interpolating implicits just a slight variant on thin-plate techniques? The most
important difference is that traditional thin-plate reconstruction creates a height field in order to fit
a given set of data points. The use of a height field is a barrier towards creating closed surfaces and
surfaces of arbitrary topology. For example, a height field cannot even represent a simple sphere-like
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

36

Modelling with Implicit Surfaces that Interpolate • 871

object such as the surface shown in Figure 2 (left). Complex surfaces can be constructed using thin-
plate techniques only if a number of height fields are stitched together to form a parametric quilt over
the surface. This also pre-supposes that the topology of the shape to be modelled is already known.
Interpolating implicit surfaces, on the other hand, do not require multiple patches in order to represent
a complex model. Both methods create a function based on variational methods, but they differ in the
dimension of the scalar function that they create. Traditional thin-plate surfaces use a function with a
2D domain to create a parametric surface, whereas the interpolating implicit method uses a function
with a 3D domain to specify the location of an implicit surface.

8.2 Sums of Implicit Primitives

Section 3 shows that an interpolating implicit function is in fact a sum of a number of functions that
have radial symmetry (based on the |x|3 function). Isn’t this similar to constructing an implicit function
by summing a number of spherical Gaussian functions (blobby spheres or meta-balls)? Let us consider
the process of modeling a particular shape using blobby spheres. The unit of construction is the single
sphere, and two decisions must be made when we add new sphere to a model: the sphere’s center and its
radius. We cannot place the center of the sphere where we want the surface to be—we must displace it
towards the object’s center and adjust its radius to compensate for this displacement. What we are doing
is much like guessing the location of the medial axis of the object that we are modeling. (The medial
axis is the locus of points that are equally distant from two or more places on an object’s boundary.) In
fact, the task is more difficult than this because summing multiple blobby spheres is not the same as
calculating the union of the spheres. The interactive method of Witkin and Heckbert [1994] relieves the
user from some of this complexity, but still requires the user to select which blobby primitives are being
moved and which are fixed. These issues never come up when modeling using interpolating implicit
surfaces because we can directly specify locations that the surface must pass through.

Fitting blobby spheres to a surface is an art, and indeed many beautiful objects have been sculpted
in this manner. Can this process be entirely automated? Muraki [1991] demonstrated a way in which
a given range image may be approximated by blobby spheres. The method begins with a single blobby
sphere that is positioned to match the data. Then the method repeatedly selects one blobby sphere and
splits it into two new spheres, invoking an optimization procedure to determine the position and radii of
the two spheres that best approximates the given surface. Calculating a model composed of 243 blobby
spheres “took a few days on a UNIX workstation (Stardent TITAN3000 2 CPU).” Similar blobby sphere
data approximation by Bittar et al. [1999] was limited to roughly 50 blobby spheres. In contrast to these
methods, the bunny in Figure 6 (right) is an interpolating implicit surface with 800 boundary and 800
normal constraints. It required 1 minute 43 seconds to solve the matrix equation for this surface, and
the iso-surface extraction required 7 minutes 43 seconds. Calculations were performed on an SGI O2
with a 195 MHz R10000 processor.

9. CONCLUSION AND FUTURE WORK

In this paper we have introduced new approaches for model creation using interpolating implicit sur-
faces. Specific advantages of this method include:

• Direct specification of points on the implicit surface
• Specification of surface normals
• Conversion of polygon models to smooth implicit forms
• Intuitive controls for interactive sculpting
• Addition of new control points that leave the surface unchanged (like knot insertion)
• A new approach to blending objects

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

37

872 • G. Turk and J. F. O’Brien

A number of techniques have been developed for working with implicit surfaces. Many of these tech-
niques could be directly applied to interpolating implicits, indicating several directions for future work.
The critical point analysis of Stander and Hart [1997] could be used to guarantee topologically correct
tessellation of such surfaces. Interval techniques, explored by Duff, Snyder and others, might be applied
to tiling and ray tracing of interpolating implicits [Duff 1992; Snyder 1992]. The interactive texture
placement methods of Pedersen [1995; 1996] should be directly applicable to interpolating implicit sur-
faces. Finally, many marvelous animations have been produced using blobby implicit surfaces [Blinn
1982; Wyvill et al. 1986]. We anticipate that the interpolating properties of these implicit surfaces may
provide animators with an even greater degree of control over implicit surfaces.

Beyond extending existing techniques for this new form of implicit surface, there are also research
directions that are suggested by issues that are specific to our technique. Like blobby sphere implicits,
interpolating implicit surfaces are everywhere smooth. Perhaps there are ways in which sharp features
such as edges and corners can be incorporated into an interpolating implicit model. We have shown
how gradients of the implicit function may be specified indirectly, using positive constraints that are
near zero constraints, but it may be possible to modify the approach to allow the exact specification of
the gradient.

Another direction for future research is to find higher-level interactive modelling techniques for
creating these implicit surfaces. Perhaps several new constraints could be created simultaneously,
maybe arranged in a line or in a circle for greater surface control. It might also make sense to be able
to move the positions of more than one constraint at a time. Another modelling issue is the creation of
surfaces with boundaries. Perhaps a second implicit function could specify the presence or absence of a
surface. Another issue related to interactivity is the possibility of displaying the surface with polygons
rather than with floaters. With sufficient processor power, creating and displaying a polygonal isosurface
of the implicit function could be done at interactive rates.

ACKNOWLEDGMENTS

We thank the members of the Georgia Tech Geometry Group for their ideas and enthusiasm. Also thanks
to Victor Zordan for help with video. Finally, we are grateful to the reviewers for their suggestions to
improve this paper.

REFERENCES

BITTAR, E., TSINGOS, N., AND GASCUEL, M.-P. 1995. Automatic reconstruction of unstructured 3D data: Combining a medial axis
and implicit surfaces. Computer Graphics Forum (Proceedings of Eurographics ’95) 14, 3, 457–468.

BLINN, J. F. 1982. A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3, 235–256.
BLOOMENTHAL, J. 1988. Polygonization of implicit surfaces. Computer-Aided Geometric Design 5, 4, 341–355.
BLOOMENTHAL, J. 1994. An implicit surface polygonizer. In Graphics Gems IV, P. S. Heckbert, Ed. Academic Press, Cambridge,

324–349.
BLOOMENTHAL, J. 1997. Introduction to Implicit Surfaces. Morgan Kaufmann Publishers, Inc., San Francisco, CA.
CARR, J. C., MITCHELL, T. J., BEATSON, R. K., CHERRIE, J. B., FRIGHT, W. R., MCCALLUM, B. C., AND EVANS, T. R. 2001. Reconstruction

and representation of 3d objects with radial basis functions. Computer Graphics Proceedings, Annual Conference Series
(SIGGRAPH 2001), 67–76.

CELNIKER, G. AND GOSSARD, D. 1991. Deformable curve and surface finite-elements for free-form shape design. Computer
Graphics (SIGGRAPH 91) 25, 4 (July), 257–266.

DUCHON, J. 1977. Spline minimizing rotation-invariant semi-norms in Sobolev spaces. In Constructive Theory of Functions on
Several Variables, Lecture Notes in Mathematics 571, W. Schempp and K. Zeller, Eds. Springer-Verlag, Berlin.

DUFF, T. 1992. Interval arithmetic and recursive subdivision for implicit functions and constructive solid geometry. Computer
Graphics (SIGGRAPH 92) 26, 2 (July), 154–168.

DYN, N. 1987. Interpolation of scattered data by radial basis functions. In Topics in Multivariate Approximation, L. L. S. C. K.
Chui and F. I. Utreras, Eds. Academic Press, Cambridge, 47–61.

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

38

Modelling with Implicit Surfaces that Interpolate • 873

GIROSI, F., JONES, M., AND POGGIO, T. 1993. Priors, stabilizers and basis functions: from regularization to radial, tensor and
additive splines. Tech. rep., MIT Artificial Intelligence Laboratory. June. A.I. Memo No. 1430.

GRIMSON, W. E. L. 1983. Surface consistancy constraints in vision. Computer Vision, Graphics, and Image Processing 24, 1
(Oct.), 28–51.

HART, J. 1993. Ray tracing implicit surfaces. Siggraph 93 Course Notes: Design, Visualization and Animation of Implicit
Surfaces, 1–16.

HART, J. 1997. Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces. The Visual Com-
puter 12, 10, 527–545.

KALRA, D. AND BARR, A. 1989. Guarenteed ray intersection with implicit surfaces. Computer Graphics (SIGGRAPH 89) 23, 4,
297–306.

KEREN, D. AND GOTSMAN, C. 1998. Tight fitting of convex polyhedral shapes. Int. J. Shape Modeling, 111–126.
LORENSEN, W. AND CLINE, H. E. 1987. Marching cubes: A high resolution 3-D surface construction algorithm. Computer Graphics

(SIGGRAPH 87) 21, 4 (July), 163–169.
MIRAKI, S. 1991. Volumetric shape description of range data using ‘blobby model’. Computer Graphics (SIGGRAPH 91) 25, 4

(July), 227–235.
MORSE, B., YOO, T. S., RHEINGANS, P., CHEN, D. T., AND SUBRAMANIAN, K. 2001. Interpolating implicit surfaces from scattered

surface data using compactly supported radial basis functions. Shape Modelling International, 89–98.
NISHIMURA, H., HIRAI, M., KAWAI, T., KAWATA, T., SHIRKAWA, I., AND OMURA, K. 1985. Object modeling by distribution function and

a method of image generation. Trans. Inst. Elect. Commun. Eng. Japan J68-D, 4, 718–725.
PEDERSEN, H. 1995. Decorating implicit surfaces. Computer Graphics Proceedings, Annual Conference Series (SIGGRAPH 95),

291–300.
PEDERSEN, H. 1996. A framework for interactive texturing on curved surfaces. Computer Graphics Proceedings, Annual

Conference Series (SIGGRAPH 96), 295–302.
ROTH, S. 1982. Ray casting as a method for solid modeling. Computer Graphics and Image Processing 18, 2, 109–144.
SAVCHENKO, V. V., PASKO, A. A., OKUNEV, O. G., AND KUNNI, T. L. 1995. Function representation of solids reconstructed from

scattered surface points and contours. Computer Graphics Forum 14, 4 (Oct.), 181–188.
SNYDER, J. 1992. Interval analysis for computer graphics. Computer Graphics (SIGGRAPH 92) 26, 2 (July), 121–130.
STANDER, B. T. AND HART, J. C. 1997. Guaranteeing the topology of an implicit surface polygonization for interactive modeling.

Computer Graphics Proceedings, Annual Conference Series (SIGGRAPH 97), 279–286.
SZELISKI, R. 1990. Fast surface interpolation using hierarchical basis functions. IEEE Trans. Pattern Anal. Mach. Intell. 12, 6

(June), 513–528.
TAUBIN, G. 1993. An improved algorithm for algebraic curve and surface fitting. In Fourth International Conference on

Computer Vision (ICCV ’93). IEEE, Berlin, Germany, 658–665.
TERZOPOULOS, D. 1988. The computation of visible-surface representations. IEEE Trans. Pattern Anal. Mach. Intell. 10, 4

(July), 417–438.
TURK, G. AND O’BRIEN, J. 1999. Shape transformation using variational implicit functions. Computer Graphics Proceedings,

Annual Conference Series (SIGGRAPH 1999), 335–342.
WELCH, W. AND WITKIN, A. 1994. Free-form shape design using triangulated surfaces. Computer Graphics Proceedings, Annual

Conference Series (SIGGRAPH 94), 247–256.
WITKIN, A. P. AND HECKBERT, P. S. 1994. Using particles to sample and control implicit surfaces. Computer Graphics Proceedings,

Annual Conference Series (SIGGRAPH 94), 269–278.
WYVILL, G., MCPHEETERS, C., AND WYVILL, B. 1986. Data structures for soft objects. The Visual Computer 2, 4, 227–234.

Received July 2001; revised April 2002; accepted May 2002

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.

39

Some Notes on

Radial Basis Functions

and

Thin Plate Splines

John C. Hart
Dept. of Computer Science

University of Illinois Urbana-Champaign

April 24, 2005

Many methods exist for defining a scalar field f : Rn → R given N sample values fi ∈
R at N scattered data points xi ∈ Rn. These methods largely construct the scalar field as the
linear combination of N basis functions f(x) =

∑N
i=1 aiφi(x). For example, Fourier and wavelet

methods transform these data points into a corresponding number of frequencies and amplitudes
(and phases). But a theorem of Haar shows that some configurations of data points can lead to ill
conditioned and even degenerate linear combinations.

A more robust approach arises from so-called data dependent methods whose basis functions
depend on the locations of the data points. These basis functions are often radially symmetric and
centered at each of the data points, taking the form

f(x) =
N∑

i=1

aiφ(||x− xi||). (1)

1 Shepard’s Method
An early method in this form is Shepard’s method, which is based on the radially-symmetric basis
functions of invese power distance 1/rµ where typically µ = 1, 2. Normalizing these basis func-
tions to create a partition of unity and then weighting each basis function by the desired value fi

of its corresponding point xi yields

f(x) =

∑N
i=1 fi||x− xi||−µ∑N
i=1 ||x− xi||−µ

. (2)

1
40

which when divided out results in the form (1) with the radially-asymetric basis functions

φi(x) =

∏
j 6=i ||x− xj||µ∑N

i=1

∏
j 6=i ||x− xj||µ

. (3)

That f(xi) = fi can be verified by showing φi(xj) = δij.
Shepard’s method is fast since it does not require solving a linear system to find the basis

weights, instead using the data point’s desired valued fi directly. However, the quality of the
surface reconstructed by Shepard’s method suffers near the data points, with corners when µ = 1
or flat regions when µ ≥ 2. These artifacts can be reduced by interpolating fi + ∇f · (x − xi)
instead of fi but this sacrifices the accuracy of the surface reconstruction to overcome a problem in
the formulation. A version of Shepard’s method derived from quadratic B-spline kernels organized
in an octree hierarchy was used recently to create the multi-level partition of unity (MPU) method
[3].

2 Radial Basis Functions
Shepard’s method avoids the careful choice in (1) of weights ai to ensure f(xi) =

∑
aiφi(xi) = fi

by using basis functions that are not radially symmetric about the xi. If the basis functions are
radially symmetric then we need to solve a linear system

φ11 φ12 . . . φ1N

φ21 φ22 . . . φ2N
...

...
φN1 φN2 . . . φNN




a1

a2
...

aN

 =


f1

f2
...

fN

 (4)

where φij = φ(||xi − xj||) to ensure the proper weights are chosen.
The complete radial basis function (RBF) method augments (1) with the addition of a polyno-

mial P (x) in the components of x. This polynomial term is usually linear (adding linear precision
to the system) and its four coefficients are added to the matrix system and solved with the rest.
This matrix can be solved in linear time using a multipole expansion [1]. The matrix is dense
but compact-support radial basis functions exist (at the expense of smoothness) that yield a more
efficient sparse matrix [2, 4, 5].

Radial-basis-function representations must to have at least one center off the isosurface to avoid
trivial (constant) solutions to (4). One strategy is to place single RBF center set to an “inside”
value in the middle of an object, but it is sometimes difficult to determine the middle of a contorted
object. Another strategy is to surround the object with RBF centers set to an “outside” value, but
these values can sometimes interfere with the shape of the RBF surface [6].

An alternative to these inside and outside constraints is possible through the use of dipoles
[6]. Instead of placing 0-valued RBF centers on the surface at xi, we place a pair of centers at
xi ± εn with values ±ε, where ni = ∇φi/|∇φi| is the RBF surface normal at xi.. In addition
to overcoming the previous problems, RBF dipoles have the additional benefit of exerting control
over the local orientation of the RBF surface.

2
41

2.1 Thin Plate Splines
(The following section began with the notes of USC’s J.P. Lewis provided by Matthieu Desbrun,
which were subsequently corrected and rederived this past summer with the help of UIUC mathe-
matician Rob Ghrist and his grad student Jaebum Jung in preparation for a shape modeling class
this past fall.)

In 2-D, this interpolation results in a height field f : R2 → R where the xi ∈ R2 are positions in
the plane and the fi are the desired altitude of f at those positions. The bending energy of a height
field is the functional B[f] =

∫∫
(f 2

xx+2f 2
xy +f 2

yy)dxdy. If the radial basis function φ(r) = r2 log r
is used, then the resulting height field is a thin plate spline of minimum bending energy, as would
be a thin sheet of metal passing through the points. In odd dimension, e.g. xi ∈ R3, the radial
basis function φ(r) = r3 minimizes the bending energy of the field. This is easiest to show for the
1-D case, where the points xi are the single coordinates xi.

If we let P denote a second derivative operator, then

B[f] = ||Pf ||2 = 〈Pf, Pf〉 = 〈P †Pf, f〉 = 〈Lf, f〉 (5)

using the Frobenius norm, any suitable inner product over the Hilbert space of f, the definition of
the adjoint as 〈Ax, x〉 = 〈x, A†x〉, and the fourth derivative operator L as a shorthand for P †P.

In order to incorporate the minimization of bending energy into the least-squares interpolation
of point data, we minimize an energy functional

E[f] =
N∑

i=1

(f(xi)− fi)
2 + λB[f] (6)

that combines the two using λ to control the balance. Its variational derivatives are

dE

df
[f] = 2

N∑
i=1

(f(xi)− fi)δ(x− xi) + λ
dB

df
[f] (7)

dB

df
[f] = lim

a→0

2a〈Pf, Pg〉+ a2〈Pg, Pg〉
a

= 2〈Lf, g〉 (8)

where g is a test function. Setting (7) to zero yields

Lf = −1

λ

N∑
i=1

(f(xi)− fi)δ(x− xi). (9)

We “divide by L” on both sides by finding the Green’s function G of L such that LG(x, xi) =
δ(x− xi). This function is a “convolutional inverse” of L such that

f = G ?

(
−1

λ

N∑
i=1

(f(xi)− fi)δ(x− xi)

)
. (10)

3
42

It is easier to work with convolution in the Fourier domain, where it becomes a simple product.
Recall the Fourier transform of the derivative of a function

F [f ′(t)] =

∫ ∞

−∞
f ′(t)e−iωtdt = f(t)eiωt

∣∣∞
−∞ −

∫ ∞

−∞
f(t)(−i)ωe−iωtdt = iω

∫ ∞

−∞
f(t)e−iωtdt

(11)
where the second step is the result of an integration by parts with v = e−iωt and du = f ′(t)dt,
and the evaluation of the portion outside the integral goes to zero. Iterating we find the Fourier
transform of the kth derivative is F [f (k)(t)] = |ω|kF [f(t)].

Recall L = P †P is a fourth derivative operator, so F [LG] = ω4F [G]. Also F [LG] = F [δ(x−
x0)] and the latter is a constant, specifically e−iωx0 . Hence F [G] ∝ 1/ω4 which corresponds to
the function |x|3 in the spatial domain. Computing F−1(1/ω4) is difficult because the integral
diverges, but can be windowed with a factor of e−a|x| and taking the limit as a → 0,

F [e−a|x||x|3] =

∫
e−a|x||x|3e−i2πωxdx (12)

=

∫ ∞

0

e−a|x|x3e−i2πωxdx +

∫ 0

−∞
e−a|x|(−x)3e−i2πωxdx (13)

= 6(a + i2πω)−4 + 6(a + i2πω)−4. (14)

The limit lima→0F [e−a|x||x|3] gives us lima→0 12(a + i2πω)−4 which is proportional to 1/ω4.

References
[1] CARR, J., BEATSON, R., CHERRIE, J., MITCHELL, T., FRIGHT, W., MCCALLUM, B.,

AND EVANS, T. Reconstruction and representation of 3d objects with radial basis functions.
Computer Graphics (Proc. SIGGRAPH ’01) 35 (2001), 67–76.

[2] MORSE, B., YOO, T., RHEINGANS, P., CHEN, D., AND SUBRAMANIAN, K. Interpolating
implicit surfaces from scattered surface data using compactly supported radial basis functions.
In Proc. Shape Modeling International (2001), pp. 89–98.

[3] OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEIDEL, H.-P. Multi-level parti-
tion of unity implicits. ACM Trans. on Graphics 22, 3 (2003), 463–470. Proc. SIGGRAPH.

[4] OHTAKE, Y., BELYAEV, A., AND SEIDEL, H.-P. A multi-scale approach to 3d scattered data
interpolation with compactly supported basis functions. In SMI ’03: Proceedings of the Shape
Modeling International 2003 (2003), IEEE Computer Society, p. 292.

[5] OHTAKE, Y., BELYAEV, A., AND SEIDEL, H.-P. 3d scattered data approximation with adap-
tive compactly supported radial basis functions. In Proc. Shape Modeling Intl. (2004), pp. 31–
39.

[6] TURK, G., AND O’BRIEN, J. F. Modelling with implicit surfaces that interpolate. ACM Trans.
on Graphics 21, 4 (2002), 855–873.

4
43

Guaranteeing the Topology of an Implicit Surface Polygonization for
Interactive Modeling

Barton T. Stander1 John C. Hart2

School of EECS
Washington State University

Abstract

Morse theory shows how the topology of an implicit surface is af-
fected by its function’s critical points, whereas catastrophe theory
shows how these critical points behave as the function’s parameters
change. Interval analysis finds the critical points, and they can also
be tracked efficiently during parameter changes. Changes in the
function value at these critical points cause changes in the topology.
Techniques for modifying the polygonization to accommodate such
changes in topology are given. These techniques are robust enough
to guarantee the topology of an implicit surface polygonization, and
are efficient enough to maintain this guarantee during interactive
modeling. The impact of this work is a topologically-guaranteed
polygonization technique, and the ability to directly and accurately
manipulate polygonized implicit surfaces in real time.

Descriptors: I.3.5 Computational Geometry and Object Modeling
— Modeling packages.General Terms: Algorithms.
Keywords: catastrophe theory, critical points, implicit surfaces,
Morse theory, polygonization, topology, interval analysis, interac-
tive modeling, particle systems.

1 Introduction

Shapes are represented implicitly by a function that classifies points
in space as inside the shape, outside the shape or on the shape’s
surface, called the implicit surface. This representation provides
computer graphics with geometric models that can be easily and
smoothly joined together, but the incorporation of the implicit rep-
resentation into graphics systems can be problematic. Polygoniza-
tion of implicit surfaces allows graphics systems to reap the power-
ful modeling benefits of the implicit representation while retaining
the rendering speed and flexibility of polygonal meshes.

The topology (specifically thehomotopy type) of an implicit
surface refers to the connectedness of the shape, including the num-
ber of disjoint components and the number of holes in each com-
ponent (genus). This should not be confused with other instances

1Current address: Strata, 1562 El Vista Circle, Saint George, UT 84765,
barts@strata3d.com

2Address: School of EECS, WSU, Pullman, WA 99164-2752,
hart@eecs.wsu.edu

of topology in computer graphics, such as the connection patterns
of a mesh of polygons or parametric patches. Thus, for a polygo-
nization to accurately represent the topology of an implicit surface
the number of components and the genus of each component of the
polygonization need to agree with that of the implicit surface.

Implicit surfaces are commonly polygonized to a given degree
of geometric accuracy. This accuracy is in some cases adaptively
related to the local curvature of the implicit surface, reducing the
number of polygons without affecting the appearance of the sur-
face. This work instead focuses on a polygonization that accu-
rately discerns the topology of an implicit surface. Topologically-
accurate polygonization can reduce the number of polygons with-
out affecting the structure of the surface.

Guaranteeing the topology of a polygonization does not neces-
sarily yield an accurate polygonization. A coffee cup is topologi-
cally equivalent to a torus, but the torus provides a poor represen-
tation for the geometry of a coffee cup. The topological guarantee
becomes useful when coupled with a geometrically accurate poly-
gonization scheme.

Guaranteeing the topology of an implicit surface polygoniza-
tion solves several open problems in computer graphics.

Polygonization topology is coordinate dependent.Polygoniza-
tion schemes often discern topology from point samples. Different
polygonizations of the same implicit surface may differ in topol-
ogy, and the same polygonization algorithm may return different
topological structures depending on the coordinate system of the
implicit surface, as demonstrated in Figure 1. For example, the im-
plicit surface might appear connected when polygonized in its mod-
eling coordinate system but could then appear disconnected when
polygonized in a scene’s coordinate system.

(c)(a) (b) (d)

Figure 1: The topology of a connected implicit surface is correctly
polygonized (a), but a translated instance is not (b). Two disjoint
components are polygonized as a single component (c), but a trans-
lated instance is polygonized properly (d).

Interloping components.Some configurations of implicit surfaces
can yield unexpected disjoint components. Such isolated compo-
nents of the implicit surface occur because of an accumulation of
neighboring potentials but do not themselves surround any “skele-

44

tal” geometry. For example, Figure 2 shows two blobby ellipsoids
that produce a third component. Such components would not ap-
pear in a continuation-based polygonization1 , as might be used for
modeling, but would appear as a surprise in a direct ray tracing of
the implicit surface, as might be used for the final rendering.

z = f(x; y; 0) f(x; y; z) = 0

Figure 2: An interloping component found at the intersection of the
potential of two blobby ellipses (left) and two polygonized blobby
ellipsoids (right). The algorithms described in this paper were used
to correctly polygonize the interloping configuration on the right.

Figure 3: Implicit form displayed using a particle system (left) and
polygonized (right).

Real-time implicit surface modeling. Implicit surfaces can be
modeled and displayed in real-time using a particle system repre-
sentation [35]. The viewer must then infer the shape of the implicit
surface from the positions and orientations of the particles. Poly-
gonization of the particles provides a better visual representation of
the implicit surface, as demonstrated in Figure 3, but adding a poly-
gonization step after every modeling change significantly degrades
the otherwise real-time performance of the system. The ability to
detect and correct topology changes allows the system to dynami-
cally maintain the polygonization in real time by reconnecting the
vertices of a polygonization only when a topology change has oc-
curred, and only in the neighborhood of the topology change.

This work hence has two objectives. The first is to generate
a polygonization of an implicit surface that is guaranteed to agree
with its topology. The second objective is to maintain this topo-
logical guarantee during interactive manipulation of the surface.
The topology of implicit surface polygonizations are guaranteed
by tracking a few special points, called critical points, that dictate
the topology of the implicit surface.

Section 2 examines previous polygonization techniques that con-
sider topology. Section 3 describes critical points and adapts exist-
ing interval search methods and constraint techniques to the spe-
cific tasks of finding and tracking critical points. Section 4 ana-
lyzes the effect of critical points on topology and describes tech-
niques for adjusting the topology of a polygonization to match the

1The techniques developed in this paper could be used to assist a continuation-
based polygonization schemes detect such isolated components.

topology of the implicit surface. Section 5 describes a new poly-
gonization algorithm based on Morse theory that polygonizes an
implicit surface with a guarantee that the topology of the polygo-
nization matches the topology of the implicit surface. Section 6
describes several new algorithms for maintaining this topological
guarantee fast enough to support direct manipulation at interactive
speeds. Section 7 concludes with a summary, implementation de-
tails and directions for further investigation.

2 Previous Work

One method for interrogating an implicit surface subdivides space
into cells and samples the implicit surface at the corners of these
cells [22, 36, 16, 2, 20].

Some cellular polygonizations can guarantee that the implicit
surface is contained in the union of a set of arbitrarily small cells,
hence yielding a guarantee on surface topology accurate to a given
geometric precision (e.g. the diameter of the smallest cells). Both
the Lipschitz condition [14] and interval analysis [30, 17] can guar-
antee that an implicit surface does not pass through some cells.
Cells for which this guarantee fails are “ambiguous” and can be
subdivided until a given level of precision is reached and the im-
plicit surface is assumed to lie within the union of the ambiguous
cells. These ambiguous cells can then be further subdivided into
“globally parameterizable” components [28]. The topology of the
surface passing through such a component can be determined with
a few point samples. Such cellular subdivision schemes yield a
geometrically precise guaranteed representation of the implicit sur-
face topology, though at the expense of a polygonization composed
of an unnecessarily large number of small polygons.

An alternative method for interrogation constrains a particle
system to the implicit surface [3, 33, 31, 9, 8]. When the implicit
surface remains static, such as during a pause in user manipulation,
it’s particle system can be polygonized [6, 35].

A polygonization of the particle system can be maintained dur-
ing user manipulation in a previous work [24]. Changes in topol-
ogy were detected by comparing the interpolated polygonization
normals to the implicit surface gradients at the vertices of the poly-
gonization. Significant differences in these two vectors implied that
the topology of the polygonization might not match the topology of
the underlying implicit surface.

Critical points have also been used to determine implicit surface
topology during a “shrinkwrap” polygonization [4]. A Lipschitz
condition on the derivative of the function was used to guarantee
the absence of critical points in a neighborhood, and upon failure,
Newton’s method was used to find the possible critical point. If
Newton’s method failed to converge, then the neighborhood was as-
sumed to contain no critical points. The shrinkwrapping work also
described a technique for repolygonizing the vertices surrounding
a critical point based on the positions and orientations of the nearby
polygons. Section 5 further explains and analyzes the shrinkwrap
algorithm.

The analysis of topology using critical points is not entirely new
to computer graphics. Critical points of vector and tensor fields are
used to delineate topologically-distinct regions in the visualization
of flow [13, 7]. Catastrophes have been used to understand caustics
[18] and to interpret projections [15]. Morse theory has been used
to reconstruct surfaces from cross sections [27] and to find surface-
surface intersection curves [5].

3 Critical Points

The implicit surfacedefined by a functionf : R3 ! R is the set
of pointsx 2 R

3 that satisfyf(x) = 0. We assume the function

45

returns positive values inside the object, so thesolid modeled by
the implicit surface is the set of pointsfxjf(x) � 0g:

This work requires the functionf to beC2 continuous, with
continuous first and second derivatives, and its implicit surface must
be a manifold with a well defined, continuously varying surface
normal. These restrictions include exponential-based “blobby” mod-
els [1], but exclude some of the more efficientC1 piecewise poly-
nomial approximations [21, 36].

The implicit surface is extended into a family of surfaces de-
fined byf(x;q) continuously parameterized by the vectorq con-
sisting of various model parameters (e.g. the locations of blobby
elements). For some values ofq; the implicit surface defined by
f(x;q) = 0 may contain a cusp, kink or crease, specifically when
the implicit surface changes topology. We consider the implicit sur-
faces in this family before and after but not during such topology
changes. An alternative technique exists for interactively manipu-
lating implicit surfaces with cusps, kinks and creases [25].

Thecritical pointsof a functionf occur where its gradient

rf(x) = (fx(x); fy(x); fz(x)) (1)

vanishes. (The notationfx = @f=@x:) A critical value is the value
of the functionf at a critical point.

The HessianV (called thestability matrix in catastrophe the-
ory) is defined as the Jacobian of the gradient

V (x) = J(rf(x)) =

"
fxx(x) fxy(x) fxz(x)
fyx(x) fyy(x) fyz(x)
fzx(x) fzy(x) fzz(x)

#
: (2)

Sincefxy = fyx; etc., the stability matrix is symmetric.
A critical point x is classified based on the signs of the three

eigenvaluesl1 � l2 � l3 of V (x) [32]. If all three eigenvalues
are non-zero, then the critical point is callednon-degenerateand is
either a maximum, minimum or some kind of saddle point. In three
dimensions, saddle points come in two varieties. Table 1 indicates
this classification.

l1 l2 l3 Critical Point
- - - Maximum Point
- - + 2-Saddle
- + + 1-Saddle
+ + + Minimum Point

Table 1: Classification of critical points based on the sign of the
eigenvalues of the stability matrix.

The critical points are continuously dependent on the parame-
ter vectorq: As the parameter vectorq changes, the critical points
move in space. They can also appear spontaneously in pairs, or
collide in pairs, annihilating each other. If any of the three eigen-
values of the stability matrix of a critical point equal zero thenx
is called adegenerate critical point.The creation and destruction
of critical points occur at degenerate critical points Critical point
creation/destruction is demonstrated in Figure 4.

Isolated degenerate critical points are unstable. In the rare event
that an isolated degenerate critical point does appear, it can be re-
moved by a small perturbation of the implicit surface parameters
without affecting the implicit surface topology.

Some functions can yields non-isolated degenerate critical points
(critical sets). For example, the cylinder defined byf(x; y; z) =
x2+y2�1 has a critical line along thez-axis. A small perturbation
of the cylinder into an ellipsoidf(x; y; z) = x2 + y2 + �z2 � 1
collapses the degenerate critical line into a single non-degenerate
critical point at the origin. We assume the family of implicit sur-
faces is parameterized such that degenerate sets can be removed by
such perturbation.

★ ★

★

★

★
★

(a) (b) (c)

Figure 4: Creation of critical points in 1-D:y = f(x; 0; 0): (a) Two
summed Gaussian bumps, one large and one small, sufficiently
close such that there is only a single maximum point in the do-
main shown. (b) Moving the smaller bump away from the larger
creates a degenerate critical point. (c) Moving the smaller bump
farther results in the creation of a pair of new critical points: a
maximum point and a minimum point. Performing these steps in
reverse demonstrates critical point annihilation.

3.1 Finding All Critical Points

Interval analysis searches can be guaranteed to find all points satis-
fying a given criterion in a given bounded domain to a desired de-
gree of accuracy [19, 23]. Such a search can find all of the critical
points of a given function to determine the topology of its implicit
surface.

The interval search for critical points starts with an initial box
bounding the space of interest. The simple interval search for criti-
cal points shown in Figure 5 eliminates large portions of space that
cannot contain a critical point.

Given a box (a vector of intervals)X = [x0; x1] � [y0; y1] �
[z0; z1] the algorithm checks whether the intervals returned by all
of the partial derivatives contain zero. If not, thenX contains no
critical points. If so, then the algorithm subdividesX and tests each
component individually. Note thatFx(X) is an interval arithmetic
implementation of@f=@x; and likewise forFy; Fz:

Procedure SimpleSearch(X)
If diam(X) < � then indicate critical point inX:
If 0 2 Fx(X) and0 2 Fy(X) and0 2 Fz(X) then

SubdivideX and continue the search recursively.

Figure 5: Simple interval divide and conquer search algorithm.

In these algorithms, subdivision means dividing into halves with
respect to its widest axis, although any number of subdivision tech-
niques could be used. The diameter of a boxdiam(X) is measured
using the chessboard metric, and is simply the width of the widest
interval-element in the vectorX:

Simple subdivision performs remarkably well, discarding large
portions of space known not to contain critical points. This tech-
nique will eventually finds all critical points to any degree of accu-
racy within a given bounding box, but with only linear convergence.

When the box diameter reaches a given size, the quadratically-
convergent interval Newton’s method shown in Figure 6 refines
and/or subdivides the box down to the desired numerical precision
[28, 11].

Given two pointsx;y there exist pointsz between2 x andy
such that

rf(x) + V (z)(y� x) = rf(y); (3)

where the stability matrixV is the Jacobian ofrf: Letm(X) re-
turn the midpoint of boxX. The algorithm seeksy 2 X such that
rf(y) = 0: Since bothx;y 2 X; thez satisfying (3) must be in
X as well. Thus, solving

rf(m(X)) + V (X)(Y �m(X)) = 0: (4)

yieldsY; a box containing all of the critical points inX: Note that

46

Procedure NewtonSearch(X)
Repeat.

SolveV (X)(Y�m(X)) = �rf(m(X)) for Y:
If Y � X then subdivideX and search recursively.
If Y � X then there is a unique c.p. inY (andX).
If Y \X = ; then there is no c.p inX: Return.
Otherwise letX = X \Y:

Until diam(X) < �:
Indicate critical point atm(X):

Figure 6: Interval Newton’s method search for critical points.

V (X) returns a matrix of intervals.
An interval version of Gauss-Seidel is recommended for solv-

ing (4), but this can lead to two problems. First, the diagonal el-
ements ofV (X) might contain zero, requiring the interval arith-
metic division operation to correctly perform a division by an inter-
val containing zero. Division by intervals containing zero produce
two intervals, leading to additional algorithm recursion [28, 10].
Solving the rows whose diagonal elements do not contain zero first
reduces the occurrence of semi-infinite intervals [11].

Solving

V �1
c V (X)(Y � x) = �V �1

c rf(m(X)): (5)

whereVc = m(V (X)) instead of (4) yields a much tighter bound
and hastens the NewtonSearch performance [11]. Note that the
expressionm(V (X)) returns a scalar matrix consisting of the mid-
points of the intervals ofV (X):

When a critical point lies on an edge of the box, NewtonSearch’s
convergence is less quadratic. ExtendingX outward by a small
percentage each iteration avoids this problem. Time may also be
incorporated into the search by crossingX with the time interval
[t0; t1]:

3.2 Tracking Critical Points

Altering an implicit surface’s parameters changes the positions of
some or all of the critical points.

The same techniques that constrain particles to adhere to the
implicit surface [35], can also cause particles to adhere to any se-
lected critical point.

Letx = x(t) be a particle constrained to follow one of the criti-
cal points of the functionf: Its partial derivativesfx(x); fy(x); and
fx(x) are all constrained to zero. To ensure that they remain zero,

their time derivatives_fx(x) = d2f

dxdt
(x); _fy(x) and _fz(x)must also

be set to zero. Given the parameter vectorq and its velocity_q; one
can solve these equations to determine the critical point velocity_x.
This velocity is then passed to a differential equation solver (such
as fourth-order Runge-Kutta) to approximate the new location of
the critical point. Newton’s method refines the approximation.

4 Detecting and Correcting Topology Changes

The identification of critical points simplifies topologically-guar-
anteed direct manipulation of implicit surfaces through a polyg-
onal representation. The key to solving the topology problem is
that a change in the topology of a surface is always accompanied
by a change in the sign of a critical value [12]. Monitoring the
critical points greatly simplifies the burden of detecting topologi-
cal changes, and divides the problem into classifying topological
changes, identifying polygons to remove and reconnecting the ver-
ticed of the removed polygons.

2The notion of “between” for points in space means thatz is in a box with corners
at x andy.

4.1 Classifying Topological Changes

Table 2 enumerates all of the possible critical-point/sign combina-
tions and their corresponding implications on the implicit surface
topology. When an implicit surface topology change is detected,
the polygonization must be altered to properly represent the new
topology.

Critical Point Sign Changes To Action
Maximum - Destroy
Maximum + Create
2-Saddle - Cut
2-Saddle + Attach
1-Saddle - Pierce
1-Saddle + Spackle
Minimum - Bubble
Minimum + Burst

Table 2: The affect of critical point sign on topology.

4.2 Identifying Polygons to Remove

Changes in maximum and minimum critical values cause entire
simply-connected components of polygonization to be removed or
created. Changes in saddle points require the determination of spe-
cific polygons to be removed such that their vertices may be prop-
erly reconnected. These polygons intersect a separatrix extending
from the saddle point.

The separatrix may be efficiently approximated by a line for 2-
saddles, or a plane for 1-saddles. These lines and planes described
by the eigenvectors of the stability matrix of a critical point approx-
imate the separatrix.

When separatrixes are linearly approximated by lines and planes,
certain errors might occur. For example, a 2-saddle may connect
two components, but the line approximating its separatrix might
not intersect either component. One must then assume that the pa-
rameter vectorq is sufficiently close to the parameter vector at the
topology changeq� that the linear approximation correctly inter-
sect the proper polygonized implicit surface components.

The separatrix extending from a 2-saddle can be treated as an
initial value problem, using the positive eigenvectorv3(x) of the
stability matrix to define the ordinary differential equation

_x = v3(x) (6)

and using numerical integration to trace out the path of the separa-
trix. The midpoint method provided sufficient numerical accuracy
for this task in our experiments.

The case where a separatrix intersects a polygonization vertex
can be removed with a topology-preserving perturbation.

4.3 Reconnection

The following procedures describe which polygons must be re-
moved, and how their vertices are reconnected to update the topol-
ogy of the polygonization.

Destroy. When the value at a maximum goes negative, an isolated
component in the implicit surface disappears. A ray cast from the
maximum point in any direction will first intersect a polygon in
this simply-connected component. All polygons connected to this
polygon are then removed. Figure 7 pseudocodes this algorithm.

Create. When the value at a maximum goes positive, a new, simply-
connected component in the implicit surface appears. A sufficiently
small tetrahedron may be placed around the maximum point, letting
its vertices adhere to the implicit surface component and adding

47

Procedure Destroy/Burst
Cast a ray from maximum point in any direction.
Let p be the first polygon the ray intersects.
Pushp onto stack.
While stack not empty.

Let p be the result of popping the stack.
For all polygonsq sharing an edge withp:

Pushq onto stack.
Removep from polygonization.

Figure 7: The repolygonization algorithm forDestroyandBurst.

new polygons when necessary. Alternatively, a ray may be cast
from the maximum point and intersected with the implicit surface.
The first intersection denotes the location where any standard con-
tinuation polygonization technique may be applied. Figure 8 pseu-
docodes this algorithm.

Procedure Create/Bubble
Cast a ray from maximum point in any direction.
Let x 2 f�1(0) be the first ray intersection.
Polygonize the component containingx:

Figure 8: The repolygonization algorithm forCreateandBubble.

Cut. When the value at a 2-saddle goes negative, part of the im-
plicit surface disconnects. The separatrix surface extending from
the 2-saddle is found by integrating the two negative eigenvalues of
the stability matrix will intersect the polygons in a ring surround-
ing the 2-saddle. In practical cases, this separatrix is sufficiently
approximated by a plane passing through the 2-saddle perpendic-
ular to its positive eigenvector. The ring of polygons intersecting
the separatrix surface are removed, yielding two disjoint rings of
polygonization vertices. These rings are “sewn up” individually via
triangulation. Figure 9 pseudocodes this algorithm, and Figure 10
illustrates the polygon configuration.

Procedure Cut/Spackle
Let P be a plane containing the critical pointx perpen-

dicular to the uniquely-signed eigenvector ofV (x):
Cast a ray fromx in any direction withinP:
Let p0 be the first polygon intersected by the ray.
Initialize i = 0 and repeat.

Let pi+1 be a polygon intersectingP; sharing an edge
with pi; and not equal to anypj for j � i:

If no suchpi+1 exists, break.
Incrementi:

Let v0 be any vertex ofp0:
Call Procedure Ring.
Triangulatevi:
Let v0 be any vertex ofp0 not currently triangulated.
Call Procedure Ring.
Triangulatevi:

Procedure Ring
Initialize i = 0 and repeat.

Let e be an edge connecting vertexvi to vi+1
separating apk polygon from a non-pk polygon, and
vertexvi+1 not equal to anyvj for j � i:

If no suchvi+1 exists, break.
Incrementi:

Figure 9: The repolygonization algorithm forCutandSpackle.

+/−

−/+−/+

Figure 10: Polygons, eigenvalues and eigenvectors forCut and
Spackle.

Attach. When the value at a 2-saddle goes positive, two com-
ponents of the implicit surface connect. The separatrix curve ex-
tends from the 2-saddle in the direction of its positive eigenvalue
to a maximum point inside each component. The first polygon in
each direction the separatrix intersects is removed. This leaves two
disjoint rings of vertices that need to be connected. Proper corre-
spondence algorithms between the two polygons can be found (e.g.
[26]), but such techniques are not necessary if the polygonization
is restricted to triangles. Figure 11 pseudocodes this algorithm.

Procedure Attach/Pierce
Extend separatrix curves from the critical point.
Let polygonsp0 andp1 first intersect each separatrix.
Connect the vertices ofp0 with the vertices ofp1:
Removep0 andp1:

Figure 11: The repolygonization algorithm forAttachandPierce.

Pierce. When the value at a 1-saddle goes negative, a hole is
pierced in the implicit surface. Similar to theattachcase (a hole
in the implicit surface off is a connection in the implicit surface
of �f), the two polygons that intersect the separatrix curve pass-
ing through the 1-saddle in the direction of the eigenvector corre-
sponding to the one negative eigenvalue of the stability matrix are
identified. These two polygons are removed and now form the ends
of the hole. Corresponding and connecting the resulting two rings
of vertices form the walls of the hole. The algorithm in Figure 11
also repolygonizes thepiercecase.

Spackle. When the value at a 1-saddle goes positive, a hole in
the implicit surface is filled. Similar to thecut case, the separatrix
surface is constructed at the 1-saddle perpendicular to the eigen-
vector corresponding to the one negative eigenvalue of the stability
matrix. The local polygons this surface pierces are removed, and
the two resulting polygonal holes are “sewn up” by triangulation.
The algorithm in Figure 9 also repolygonizes thespacklecase and
Figure 10 illustrates the polygon configuration.

Bubble. When the value at a minimum goes negative, a pocket of

48

air forms inside the implicit solid. An air pocket in the implicit
surface off is a new component in the implicit surface of�f:
This pocket of air may therefore be treated as a simply-connected
implicit surface component, and polygonized using any of the ex-
isting techniques. The algorithm in Figure 8 also repolygonizes the
bubblecase.

Burst. When the value at a minimum goes positive, an air bubble
within the implicit solid has burst. As in the Destroy case, a ray
is cast from the minimum in any direction. The first polygon this
ray intersects, as well as any other polygons with a connection to
it, are then removed. The algorithm in Figure 7 also repolygonizes
theburstcase.

5 Polygonization

Morse theory provides the background for a topologically-guar-
anteed polygonization algorithm. Given a function f(x) implicitly
defining the surfacef�1(0); we consider the family of surfaces
f�1(a) for non-negativea: Let a0 be a value of sufficient magni-
tude such that the surfacef�1(a0) = ;: As a0 decreases, it will
pass critical values for maximum points, 2-saddles, 1-saddles and
minimum points. As each critical value is encountered, the topol-
ogy of the polygonization around its critical point is corrected. This
“inflation” algorithm is pseudocoded in Figure 12.

Procedure Inflate
Xc = SearchX for fx : rf(x) = 0g:
Let a0 > maxx2Xc

f(x):
Polygonizef�1(a0):
Fora = a0 � � to 0 step��:

Adjust vertices tof�1(a):
If 9x 2 Xc : a < f(x) < a+ � then

Correct topology change in polygonization.
Return polygonization off�1(0):

Figure 12: The “Inflate” polygonization algorithm.

When a maximum point is passed, a new simply-connected
component appears via thecreate routine. When a 2-saddle is
passed, a connection formed via theattach routine. When a 1-
saddle is passed, a hole is filled via thespackleroutine. When a
minimum point is passed, a hollow bubble is filled via theburst
routine. TheInflation polygonization of a blobby cube is demon-
strated in Figure 13

Shrinkwrapping similarly polygonizes implicit surfaces but from
the opposite direction, approaching the isovalue from the negative
side [34]. Hence, the polygonization begins with a large simply-
connected spheroid, which shrinks and appears to adhere to the fi-
nal implicit surface. Morse theory can be incorporated to detect
changes in topology during the shrinkwrapping process [4].

One problem with shrinkwrapping is that its outside-in pro-
cessing fails to account for hollow bubbles within an implicit sur-
face whereasinflate’s inside-out processing correctly detects and
polygonizes these regions. While such regions are typically hidden
from the viewer, they become visible when the surface is rendered
translucently or when the surface’s polygonization is later inter-
sected, trimmed, clipped or blended.

6 Interactive Repolygonization

The interaction algorithm consists of an initialization stage fol-
lowed by an interactive loop of user input, model update, and model
display. The system assumes it is initialized with a topologically
correct polygonization, such as is described in Section 5.

Figure 13: Polygonization viaInflationof the blobby cube. The last
image illustrates the air bubble by only rendering back-facing poly-
gons. Note that the definition of back facing may be the opposite
of one’s intuition for an air bubble.

Procedure Shrinkwrap
Xc = SearchX for fx : rf(x) = 0g:
Let a0 < minx2Xc

f(x):
Polygonizef�1(a0):
Fora = a0 + � to 0 step�:

Adjust vertices tof�1(a):
If 9x 2 Xc : a < f(x) < a+ � then

Correct topology change in polygonization.
Return polygonization off�1(0):

Figure 14: The “Shrinkwrap” polygonization algorithm [4].

For each time step, the interaction algorithm performs the steps
in Figure 15.

Procedure InteractionLoop
Repeat.

Alter model parameters based on user manipulation.
Adjust vertex positions, fix mesh.
Determine critical points.
Correct polygonization topology.
Render.

Figure 15: The interaction loop for interactive implicit surface
modeling.

Figure 16 shows a critical point tracking algorithm. During user
interaction, the critical points move and change sign. Furthermore,
one or more of the eigenvalues of the stability matrix can change
sign at some degenerate critical pointx; resulting in the creation or
annihilation of a pair of critical points. Critical point annihilation
is revealed by the collision of two critical-point tracking particles.
Critical point creation occurs spontaneously and is not detected by
the tracking particles.

Searching in four-dimensions, as shown in Figure 17, allows us
to find the location in space and time of degenerate critical points.
Since critical points can be tracked and annihilation can be de-
tected, the interval search would serve to detect the spontaneous
creation of critical points. Such occurrences rarely happen, but
when they do occur they appear as double zeros (bothrf(x) and
jV (x)j = 0) which degrades convergence.

An alternative search shown in Figure 18 finds the location in
space and time for singular points in the family of implicit surfaces.
where the value of a critical point changes sign. Such occurrences

49

Procedure Track-n-Search
Track critical points.
SearchX for fx : rf(x) = 0g:

Figure 16: The “Track-n-Search” critical point determination algo-
rithm.

Procedure Track-n-SearchDegenerate
Track critical points.
SearchX� [t0; t1] for fx : rf(x) = 0; jV (x)j = 0g:

Figure 17: The “Track-n-SearchDegenerate” critical point determi-
nation algorithm.

occur as rarely as degenerate critical points, so the interval search
can quickly guarantee that such points do not exist. However, when
they do exist, as with degenerate critical points, they appear as dou-
ble zeros which degrades the rate of convergence.

7 Conclusion

Using techniques from catastrophe theory and Morse theory, the
preceding sections developed (1) a new polygonization algorithm
that can guarantee the topology of the polygonization matches that
of the implicit surface, and (2) a new implicit surface modeling sys-
tem capable of maintaining a topologically-accurate polygonized
representation of the implicit surface during direct manipulation at
interactive update rates.

Section 4 improves previousad hocgeometry-only techniques
[24, 4] by describing a mathematically sound method for using the
separatrix to identify the polygons affected by a topology change,
and robust algorithms for reconnecting the vertices of the polygo-
nization.

Section 5 uses these techniques to polygonize an implicit sur-
face. This method improves previous geometry-based interval meth-
ods [28] in that it is faster and does not return a large number of un-
necessarily small polygons. The interval search is also guaranteed
to find all critical points, which overcomes the uncertainty of pre-
vious methods [4], and also properly polygonizes hollow bubbles
when they appear within an implicit surface.

Some initial experiments revealed that performance dropped
below ten frames per second on scenes containing combinations
of four or more interacting blobby ellipsoids. Modeling sessions
that string a chain of blobby components operate in real time, but
sessions with densely packed arrangements of blobby components
appear sluggish in the current prototype implementation of the sys-
tem. Even apparently simple configurations of blobby components
can yield numerous nearly-degenerate critical points, and their de-
tection is required for accurate topology management. This perfor-
mance was measured using the SearchSingularity interaction loop,
but is similar to the performance of the other interaction loop criti-
cal point search/tracking methods. This procedure becomes notice-
ably slow near topology changes. While any speed degradation and
inconsistency is undesirable, the algorithm does focus its computa-
tion on the time and space where it is most needed.

Procedure SearchSingularity
SearchX� [t0; t1] for fx : f(x) = 0;rf(x) = 0g:

Figure 18: The “SearchSingularity” algorithm.

7.1 Some Implementation Tricks

One of the topological guarantee’s restrictions was the lack of de-
generate critical points. However, for speed, we were able to imple-
ment aC2 cubic approximation to the exponential blobby model.
The kernel of this approximation is uniform away from the center,
and results in a three-dimensional degenerate critical set. We over-
came this problem by assuming that the derivative intervals with
zero for one endpoint did not contain a critical point, but instead
contained a portion of this 3-D critical set. We avoided the pos-
sibility that a critical point fell on the boundary of the interval by
expanding each interval by a small percentage.

Occasionally, the program errs in its attempt to process a topol-
ogy change. In such cases, the system automatically initiates a full
“inflation” repolygonization.

Further implementation details can be found in the dissertation
[29].

7.2 Future Work

Tracking critical points is much faster than searching for them, but
does not account for the pairs of critical points that can be created
spontaneously. Tracking all of the derivatives of the function could
detect degenerate critical points. This is not possible for exponen-
tials because they are infinitely differentiable, and their derivatives
become increasingly complex. Piecewise polynomials have finitely
many derivatives that become increasingly simple, and might offer
the opportunity to attempt such tracking.

Implicit surfaces still offer many challenges in modeling, tex-
turing and animation due to the flexibility of their topology. This
research solved the problem of interactive polygonization. Under-
standing the dynamics of critical points might lead to further so-
lutions to other implicit surface problems, such as maintaining a
consistent texturing during a topology change.

This research focused on 3-D implicit surfaces. Its application
to the polygonization and modeling of 2-D implicit curves would
be a useful, though perhaps now trivial, simplification.

7.3 Acknowledgments

This research was supported in part by the NSF Research Initia-
tion Award #CCR-9309210. This research was performed in the
Imaging Research Laboratory. The authors would like to thank the
SIGGRAPH reviewers for their constructive criticism and positive
comments. Further thanks are due to Dan Asimov, Jules Bloomethal
and Jim Kajiya for their help in tracking down theorems in Morse
theory. Special thanks to Andrew Glassner and Scott Lang for their
assistance with the photoready copy of this paper.

REFERENCES

[1] BLINN , J. F. A generalization of algebraic surface drawing.
ACM Transactions on Graphics 1, 3 (July 1982), 235–256.

[2] BLOOMENTHAL, J. Polygonization of implicit surfaces.
Computer Aided Geometric Design 5, 4 (Nov. 1988), 341–
355.

[3] BLOOMENTHAL, J., AND WYVILL , B. Interactive tech-
niques for implicit modeling.Computer Graphics 24, 2 (Mar.
1990), 109–116.

[4] BOTTINO, A., NUIJ, W., AND VAN OVERVELD, K. How
to shrinkwrap through a critical point: an algorithm for the
adaptive triangulation of iso-surfaces with arbitrary topology.
In Proc. Implicit Surfaces ’96(Oct. 1996), pp. 53–72.

50

[5] CHENG, K.-P. Using plane vector fieldsto obtain all the inter-
section curves of two general surfaces. InTheory and Practice
of Geometric Modeling(New York, 1989), Springer-Verlag.

[6] DE FIGUEIREDO, L. H., DE MIRANDA GOMES, J., TER-
ZOPOULOS, D., AND VELHO, L. Physically-based meth-
ods for polygonization of implicit surfaces. InProceedings of
Graphics Interface ’92(May 1992), pp. 250–257.

[7] DELMARCELLE, T., AND HESSELINK, L. The topology of
symmetric, second-order tensor fields.Proceedings IEEE Vi-
sualization ‘94(October 1994), 140–147.

[8] DESBRUN, M., TSINGOS, N., AND GASCUEL, M.-P. Adap-
tive sampling of implicit surfaces for interactive modeling and
animation. Implicit Surfaces ’95 Proceedings(April 1995),
171–185.

[9] FLEISCHER, K. W., LAIDLAW , D. H., CURRIN, B. L., AND

BARR, A. H. Cellular texture generation. InComputer
Graphics (Annual Conference Series)(Aug. 1995), pp. 239–
248.

[10] HANSEN, E. A globally convergent interval method for com-
puting and bounding real roots.BIT 18(1978), 415–424.

[11] HANSEN, E. R.,AND GREENBERG, R. I. An interval newton
method. Applied Mathematics and Computation 12(1983),
89–98.

[12] HART, J. C. Morse theory for computer graphics. Tech.
Rep. EECS-97-002, Washington State University, May 1997.
Also in: SIGGRAPH ’97 Course #14 Notes “New Frontiers
in Modeling and Texturing”.

[13] HELMAN , J. L., AND HESSELINK, L. Visualizing vector
field topology in fluid flows. IEEE Computer Graphics and
Applications(May 1991), 36–46.

[14] KALRA , D., AND BARR, A. H. Guaranteed ray intersections
with implicit surfaces.Computer Graphics 23, 3 (July 1989),
297–306.

[15] KERGOSIEN, Y. L. Generic sign systems in medical imaging.
IEEE Computer Graphics and Applications 11, 5 (Sep. 1991),
46–65.

[16] LORENSEN, W. E., AND CLINE, H. E. Marching cubes: A
high resolution 3-d surface construction algorithm.Computer
Graphics 21, 4 (July 1987), 163–170.

[17] MITCHELL, D. Three applications of interval analysis in
computer graphics. InFrontiers of Rendering. SIGGRAPH
’91 Course Notes, 1991.

[18] MITCHELL, D., AND HANRAHAN , P. Illumination from
curved reflectors.Computer Graphics 26, 2 (July 1992), 283–
291.

[19] MOORE, R. E. Interval Analysis. Prentice Hall, 1966.

[20] NING, P., AND BLOOMENTHAL, J. An evaluation of im-
plicit surface tilers.Computer Graphics and Applications 13,
6 (Nov. 1993), 33–41.

[21] NISHIMURA, H., HIRAI , M., KAWAI , T., KAWATA , T., SHI-
RAKAWA , I., AND OMURA, K. Object modeling by distribu-
tion function and a method of image generation. In Proc. of
Electronics Communication Conference ’85(1985), pp. 718–
725. (Japanese).

[22] NORTON, A. Generation and rendering of geometric fractals
in 3-D. Computer Graphics 16, 3 (1982), 61–67.

[23] RATSCHEK, H., AND ROKNE, J. Computer Methods for the
Range of Functions. John Wiley and Sons, 1984.

[24] RODRIAN, H.-C., AND MOOCK, H. Dynamic triangulation
of animated skeleton-based implicit surfaces. InProc. Im-
plicit Surfaces ’96(Oct. 1996), pp. 37–52.

[25] ROSCH, A., RUHL, M., AND SAUPE, D. Interactive visu-
alization of implicit surfaces with singularities. InProc. Im-
plicit Surfaces ’96(Oct. 1996), pp. 73–87.

[26] SEDERBERG, T. W., AND GREENWOOD, E. A physically
based approach to 2-D shape blending.Computer Graphics
26, 2 (July 1992), 25–34.

[27] SHINAGAWA , Y., KUNII , T. L., AND KERGOSIEN, Y. L.
Surface coding based on morse theory.IEEE Computer
Graphics and Applications 11, 5 (Sep. 1991), 66–78.

[28] SNYDER, J. Generative Modeling for Computer Graphics
and CAD. Academic Press, 1992.

[29] STANDER, B. T. Polygonizing Implicit Surfaces with Guar-
anteed Topology. PhD thesis, School of EECS, Washington
State University, May 1997.

[30] SUFFERN, K., AND FACKERELL, E. Interval methods in
computer graphics. InProc. AUSGRAPH 90(1990), pp. 35–
44.

[31] SZELISKI , R., AND TONNESEN, D. Surface modeling
with oriented particle systems. InComputer Graphics (SIG-
GRAPH ’92 Proceedings)(July 1992), E. E. Catmull, Ed.,
vol. 26, pp. 185–194.

[32] TAYLOR, A. E. Advanced Calculus. Ginn and Company,
1955.

[33] TURK, G. Generating textures for arbitrary surfaces us-
ing reaction-diffusion. InComputer Graphics (SIGGRAPH
’91 Proceedings)(July 1991), T. W. Sederberg, Ed., vol. 25,
pp. 289–298.

[34] VAN OVERVELD, C., AND WYVILL , B. Shrinkwrap: an
adaptive algorithm for polygonizing and implicit surface.
Tech. Rep. 93/514/19, University of Calgary, Dept. of Com-
puter Science, March 1993.

[35] WITKIN , A. P., AND HECKBERT, P. S. Using particles to
sample and control implicit surfaces. InComputer Graphics
(Annual Conference Series)(July 1994), pp. 269–278.

[36] WYVILL , G., MCPHEETERS, C., AND WYVILL , B. Data
structure for soft objects.Visual Computer 2, 4 (1986), 227–
234.

51

Using the CW-Complex to Represent the Topological Structure of
Implicit Surfaces and Solids.

John C. Hart
School of EECS

Washington State University
Pullman WA 99164-2752

(509) 335-2343
hart@eecs.wsu.edu

Abstract

We investigate the CW-complex as a data structure for visual-
izing and controlling the topology of implicit surfaces. Previ-
ous methods for contolling the blending of implicit surfaces re-
defined the contribution of a metaball or unioned blended com-
ponents. Morse theory provides new insight into the topol-
ogy of the surface a function implicitly defines by studying
the critical points of the function. These critical points are
organized by a separatrix structure into a CW-complex. This
CW-complex forms a topological skeleton of the object, indi-
cating connectedness and the possibility of connectedness at
various locations in the surface model. Definitions, algorithms
and applications for the CW-complex of an implicit surface
and the solid it bounds are given as a preliminary step toward
direct control of the topology of an implicit surface.

1 Introduction

The holy grail of implicit surface modeling research is the con-
trol of blending. Most implicit surface primitives blend based
on nothing more than proximity, often blending in undesirable
locations. Current solutions have created new implicit primi-
tives that do not blend, or use blending graphics that can create
unsightly creasing.

Blending usually changes the topology of the surface, so we
turn to tools from topology to analyze the unwanted blending
problem. Morse theory shows how the topology of a surface
implicitly defined by a function can be discerned by the ar-
rangement of function’s critical points. A theorem from Morse
theory describes a structure that represents the topology of the
surface called the CW-complex. We therefore propose using
the CW-complex as a data structure for representing the topo-
logical structure of implicit surfaces. We present algorithms
for computing the embedding of the CW-complex on an im-
plicit surface and within an implicit solid.

2 The Unwanted Blending Problem

The implicit surfaces most in need of attention to topology is
the metaball or blobby model. This model consists of spheres
blended by adding quasi-Gaussian three-dimensional bump
functions centered at key points in space. As the blending

of these metaballs depends primarily on proximity, unwanted
blending often occurs. For example, a hand can be constructed
from metaballs by blending fingers with a palm. However, if
the tips of any two fingers get too close to each other, then they
too will blend together.

Gascuel [1993] showed how to simulateprecise contactbe-
tween implicit surfaces. (The following summary is a gross
simplification, and, for example, omits all details of physical
modeling and propagation regions.) If the implicit surface of
fi comes into contact with the surface offj ; then the resulting
deformation onfi is given by

gi(x) = fi(x)� fj(x): (1)

The metaball offj has been replaced with a negative metaball
of �fj to determine the effect on metaball offi: A similar
range deformation occurs on metaballj: The resulting implicit
surfaces ofgi andgj may touch but can not interpenetrate, for
if any pointx we havegi(x) > 0 thenfi(x) > fj(x) and
thereforegj < 0: Precise contact modeling provides a method
for preventing blending and even interpenetration between two
proximate metaballs, but can deforms the metaballs even if
they do not intersect.

Guy & Wyvill [1996] proposed a blending graph to control
the blending of metaballs. (The following summary focuses
only on controlling the blending, and omits the precise contact
component.) The blending graphG is a graph that contains
a vertex for every metaball, and an edge(i; j) denoting that
metaballsi andj should blend together. Hence for each meta-
ball functionfi; a new function is defined as

gi(x) = fi(x) +
X

(i;j)2G

fj(x): (2)

The resulting implicit surface is then the union (CSG, not
blended) of the implicit surfaces of thegi

G(x) = max
i

gi(x): (3)

This union operation results in creases in the implicit sur-
faces due to theC1 discontinuities introduced by themax
operation. These discontinuities could be removed by replace
the maximum with anR-functionrepresentation [Paskoet al.,
1995] but this could reintroduce unwanted blending.

52

= U

b a c

a

b

c

Figure 1: The blend graph controlling the blending of three meta-ellipses.

3 Morse Theory

The blending of metaballs, intentional or not, is a change in
the topological type of the shape. Hence we use techniques
from topology to analyze the problem of unwanted blending.
We base our analysis on Morse theory, which describes the
topology of surfaces by the configuration of critical points, and
use a data structure from algebraic topology called the CW-
complex to represent the relationship of critical points and the
topological structure of the surface.

We assume surfaces are defined ingeneral position,such
that form of the surface remains unchanged after a perturbation
of the surface’s parameters. The assumption of general form
means that there may be special cases in which this paper’s
claims do not hold and its algorithms malfunction, but such
cases are isolated in the parameter space of the surface and
may be removed by perturbing these parameters.

Let f be a smooth real function on a smooth manifoldM1.
Thecritical pointsof f are the pointsp 2 M where its gradi-
entrf(p) vanishes. Thecritical value is the value off at a
given critical point.

The HessianV (p) of f at p 2 M yields a square sym-
metric matrix of second derivatives off: Let �i denote theith
eigenvalue, in order of non-decreasing value, and letvi denote
its corresponding eigenvector. Critical points are classified by
the number of negative eigenvalues of this matrix. The func-
tion f is called aMorsefunction if the Hessian is nonsingular
for everyp 2 M: If any of these eigenvalues are zero, then
the critical point isdegenerate.We assume the surface model
is sufficiently parameterized such that these degeneracies are
special cases and can be removed via perturbation.

Morse theory provides a connection between the arrange-
ment of these critical points and the topology ofM [Milnor,
1963]. For example, let 0 be a regular value ofg : R3 !
R: Then by the implicit function theorem, its inverse image
g�1(0) is a manifold and is called the implicit surface ofg.

1Note that with special care, Morse theory can be applied to mani-
folds of continuity as low asC0 [Goresky & MacPherson, 1988] and
for functions of continuity as low asC1 [Hart et al., 1998].

Letf be aheightfunction ong�1(0) such thatf(x; y; z) = y:
Thenf is a Morse function. Using a classic example of Bott,
let g�1(0) be a torus encircling the z-axis. Then there exist
four critical points such that

rf = (0; 1; 0) � rg = @g=@y (4)

vanishes: one minimum at the bottom of the torus, one maxi-
mum at the top of the torus, and two saddle points on the top
and bottom of the hole. If we were to construct the torus from
the bottom up, we see that a component of the surface was cre-
ated at the minima, opposing sections of the surface joined at
the saddles, and the surface closed at the top.

If the manifold isR3 ; then Morse theory can be used to
define the topology of the implicit solid off [Hart, 1998;
Fomenko & Kunii, 1997]. Critical points are classified in
four categories: maxima (3-saddles), 2-saddles, 1-saddles and
minima (0-saddles)2 . For implicit surfaces constructed with
metaballs, the critical points occur at key locations defining
the topology of the surface. A maxima occurs near the center
of a metaball component3 . A component is created if this
critical value is positive, and is destroyed if it is negative. A 2-
saddle occurs between pairs of metaballs. These metaballs are
connected if this critical value is positive, and are disconnected
if it is negative. A 1-saddle occurs in the middle of a ring of
three or more metaballs. This ring is filled if this critical value
is positive, and is pierced if it is negative. A minimum occurs
inside a non-planar collection of four or more metaballs. The
collection solid if this critical value is positive, but contains an
air bubble if the critical value is negative.

4 The CW-Complex

In algebraic topology, specifically homotopy theory, shapes
are often constructed out of cells of different dimension. An

2Johnsonet al. [1999] called the critical points of real functions on
R3 peaks, passes, palesandpits.

3Stander & Hart [1997] provides an example where ellipsoidal
metaballs can blend to yield an additional disjoint ”phantom”
component.

53

n-cell is denoteden and represents a building block of dimen-
sionn: For example, a 0-cell is a point, a 1-cell is a space curve
segment, a 2-cell is a surface patch and a 3-cell is a solid. The
n-cells are closed such that the space curve segment includes
its endpoints, the patch includes its boundary curve and the
solid includes its boundary surface.

Eachn-cell is homeomorphic to then-ball

Bn = fx 2 Rn : jjxjj � 1g: (5)

This homeomorphism also maps theboundary of an-cell to to
the(n� 1)-sphere defined

Sn = fx 2 Rn : jjxjj = 1g: (6)

It is helpful to note thatS�1 = ; and this boundary (from al-
gebraic topology) is not the same as the boundary from point-
set topology (closure minus interior).

We can now construct aCW-complexout of n-cells of in-
creasing dimensions. Ann-cell is attached to a CW-complex
by identifyingthe boundary of the cell with the union of some
collection of (n-1)-cells in the complex.

Hence, we can construct a 3-dimensional CW-complex. We
begin with the empty set. We then attach 0-cells by unioning
disjoint points into the set. We attach 1-cells by unioning space
curve segments whose endpoints lie on these points. We attach
2-cells by unioning surface patches whose boundaries lie on
the space curve segments. We attach 3-cells by filling in closed
regions bounded by space curves.

Note that the CW-complex generalizes the notion of a graph
by adding cells of dimension greater than 1. Also note that a
CW-complex generalizes the notion of a simplicial complex
in that triangles become ”polygons” and tetrahedra become
”polyhedra.” Note also that the cells need not be straight, such
that a “polygon” may contain as few as a single edge connect-
ing a single vertex to itself, and a “polyhedron” may contain
as few as a single face, a single vertex and no “edges.”

A theorem [Milnor, 1963] from classical Morse theory
states that a compact manifold has the homotopy type of a
CW-complex consisting of a�-cell for each critical point of
type� for a given Morse function. The proof of this theorem
is based on the analogous operations of attaching a handle to
a manifold and attaching a�-cell to a CW-complex. The re-
mainder of this paper describes how this CW-complex may be
instead constructed from the separatrix structure connecting
the critical points to each other.

5 The CW-Complex of an Implicit Sur-
face

As before letg implicitly define the surfaceg�1(0) and let
f be a Morse function on the surface. Letxi be the critical
points off on g�1(0); and letci = f(xi) be the correspond-
ing critical values.

The 0-cells of the CW-complex exist at the minima of the
surface. The 1-cells are separatrix curves constructed by inte-
grating the ordinary differential equation

_x = �v0(x) (7)

with the inital values set to the saddles points, and termination
values set to the minima. Situations where this curve leads

from a saddle to another saddle are unstable and removed via
perturbation.

The 2-cells are the remaining components of the implicit
surface, and can be interrogated using, for example, surface
particles [Witkin & Heckbert, 1994]. Each of these remain-
ing components will contain a single maximum which can be
used as the seed point for the birth of a surface particle pop-
ulation. These surface particles can be further constrained to
never cross a separatrix curve.

Figure 2 demonstrates the procedure on a torus. Note that
if the surface contains a single minimum, the resulting CW-
complex is a “bouquet” and is easily “unfolded” into its fun-
damental polygon [Fomenko & Kunii, 1997]. This form of the
CW-complex provides a representation of the topology of the
surface embedded on the surface itself.

6 The CW-Complex of an Implicit
Solid

Likewise, one may compute the CW-complex of an implicit
solid.

0-cells of the CW-complex are placed on the maxima. Sep-
aratrix curves are traced through each 2-saddle by integrating
the ordinary differential equation

_x = �v2(x) (8)

until they reach the maxima. Note that these separatrix curves
can not stably reach any critical point other than a maxima.

We again use surface particles to interrogate the 2-cells of
the CW-complex. The surface particles are spawned from the
1-saddles, and remain on the separatrix surface by the con-
straint

_x � v0(x) = 0: (9)

The surface particles are further constrained to not cross the
boundaries of the separatrix curves defined earlier.

The 3-cells are now well defined as the compact spatial re-
gions bounded by the separatrix surfaces, and each 3-cell will
contain a single minima critical point. These regions could be
interrogated by any volumetric region growing method.

Note that we have reversed the dimension of the cells with
respect to the index of the critical points (e.g. a 0-cell corre-
sponds to an index 3 critical point — a maximum). This is an
artifact of the sign convention of metaballs disagreeing with
the sign convention of Morse theory. Note that the cell dimen-
sion would agree with the critical point index for the function
�f which has an identical implicit surface, and also the same
solid if the interior is defined for negative values instead of
positive values.

Figure 3 demonstrates the CW-complex of a cuboid con-
structed from 8 metaballs, along with several implicit surfaces
of the function for different isovalues. The critical structure
includes 8 maxima at the vertices of the cube, 12 2-saddles
centered along the edges of the cube, 6 1-saddles centered on
the faces of the cube and a single minima at the centroid of the
cube. The CW-complex thus contains 8 0-cells connected by
12 1-cells filled by 6 2-cells surrounding a single 3-cell.

The data structure described by this paper was also devised
and used to represent crystal atomic structures [Johnsonet al.,
1999; Johnson, 1999]. In fact, the Gaussian electron density

54

a

b

c

d

a

b

c

d

a

b (b)

c

(c)

d

Figure 2: The CW-complex of a torus.

Figure 3: The CW-complex of a cuboid implicit solid.

55

maps used in crystallography are precisely the blobby objects
we use in implicit surface modeling [Blinn, 1982]. The struc-
ture appearing in Figure 3 is the very same one [Johnsonet al.,
1999] used to represent the topology of the crystaline structure
of salt.

For implicit surfaces, the CW-complex corresponding to
the defining function forms a skeletal structure. Whereas the
medial-axis skeleton represents the geonmetry of the shape,
the CW-complex skeletonizes the topology of the shape. De-
pending on the sign of the critical values, the components of
the CW-complex can be drawn to better indicate their effect
on the topology of the implicit surface. A 0-cell indicates a
connected component surrounding a maxima, and can be rep-
resented by a small circle that is filled if the maxima’s value is
positive, or unfilled if it is negative. A 1-cell indicates a pos-
sible connection between components, and can be represented
by a solid curve segment if the value of the corresponding 2-
saddle is positive, or by a dashed segment if it is negative. A
2-cell indicates a region surrounded by a ring of metaballs,
and can be represented by a hashing of solid lines if the value
of the 1-saddle it contains is positive, or by a dotted surface
if it is negative. A 3-cell indicates a region surrounded by a
shell of metaballs, and can be represented by the patches on
its boundary. These patches are brightly shaded if the value
of the minima it surrounds is positive, or dimly shaded if it is
negative.

We can replace the metaball kernel sum functionf with a
distance function

h(x) = sgn(f(x))minfjjx � yjj jy 2 f�1(0)g (10)

which shares the same sign and implicit surface asf: Then we
hypothesize that the CW-complex constructed from the sepa-
ratrix structure of this new functionh is the medial-axis skele-
ton of the implicit surface. Note that this implies that the CW-
complex ofh never contains a minima, for it would then con-
tain a 3-cell which would have been further “eroded” by the
medial axis transform.

An alternative to the CW-complex for representing the crit-
ical structure is thecritical net [Johnsonet al., 1999; Johnson,
1999]. The critical net is a simple graph representation of the
separatrix structure of the critical points. This graph consists
of a vertex for each critical point of any type. These vertices
are connected by edges that indicate a separatrix connection
between the critical points. A simple straight edge connects
the separatrices between 2-saddles and maxima points. A sep-
aratrix curve can be extended from a 1-saddle to a 2-saddle by
integrating

_x = �v1(x): (11)

An edge replaces this curve connecting the vertices represent-
ing the 1-saddle and the 2-saddle. Similarly, a separatrix curve
can be extended from the 1-saddle to the minimum by inte-
grating

_x = �v0(x) (12)

and replacing the separatrix curve by a straight edge between
the vertices corresponding to the 1-saddle and the minimum.

7 Conclusion

The CW-complex of an implicit surface replaces the smooth
surface with a quasi-polygonal version that can provide a sim-

pler representation of otherwise complex surfaces. In some
cases, the CW-complex can be embedded in the plane provid-
ing further insight into the connectedness of the surface.

The CW-complex of an implicit solid displays the topology
of the implicit surface to the user. Current controls would only
allow the user to adjust the position, orientation or scale of
metaballs. We envision a system that allows the user to di-
rectly control the topology of the implicit surface by applica-
tion of range deformations that only change the sign of a spec-
ified critical point, but do not change the locations or number
of the critical points.

The algorithms described focused on 2-manifold surfaces
and 3-manifold solids. The techniques might also be help-
ful to understand the topology of higher dimensional mani-
folds. For example, in computer graphics, the bidirectional
reflectance distribution function (BRDF) used for modeling
local illumination is the 4-manifold defined as the explicit sur-
face (graph) of the function�(�i; �i; �r; �r) with the identi-
fication�(�i; �i; �r; �r) = �(�r; �r; �i; �i): A better under-
standing of the topology of this 4-manifold might lead to more
efficient representations of it. Similarly, the plenoptic function
used in image-based modeling and rendering also describes
a 4-manifold whose topological understanding could lead to
more efficient implementation.

This research was funded by a grant by the National Science
Foundation. The author is grateful to fellow faculty members
Ulrike Axen for discussions on the CW-complex and locating
otherwise obscure references, and Bob Lewis for discussions
on applications of computational topology to modeling illumi-
nation.

References

[Blinn, 1982] Blinn, J. F. A generalization of algebraic sur-
face drawing. ACM Transactions on Graphics1(3), July
1982, pp. 235–256.

[Fomenko & Kunii, 1997] Fomenko, A. T. and Kunii, T. L.
Topological Modeling for Visualization. Springer, 1997.

[Gascuel, 1993] Gascuel, M.-P. An implicit formulation for
precise contact modeling between flexible solids. InCom-
puter Graphics (Annual Conference Series.), Aug. 1993,
pp. 313–320. Proc. SIGGRAPH 93.

[Goresky & MacPherson, 1988] Goresky, M. and MacPher-
son, R.Stratified Morse Theory. Springer, April 1988.

[Guy & Wyvill, 1996] Guy, A. and Wyvill, B. Controlled
blending for implicit surfaces using a graph. In Proc.Im-
plicit Surfaces ’95. Eurographics, 1996, pp. 107–112.

[Hart et al., 1998] Hart, J., Durr, A., and Harsch, D. Critical
points of polynomial metaballs. InProc. Workshop on Im-
plicit Surfaces. Eurographics/SIGGRAPH, June 1998, pp.
69–76.

[Hart, 1998] Hart, J. C. Morse theory for implicit surface
modeling. In Hege, H.-C. and Polthier, K., eds.,Mathe-
matical Visualization, pp. 257–268. Springer-Verlag, Hei-
delberg, 1998.

56

[Johnsonet al., 1999] Johnson, C., Burnett, M., and Dunbar,
W. Crystallographic topology and its applications. In
Bourne, P. and Watenpaugh, K., eds.,Crystallographics
Computing 7: Proceedings from the Macromolecular Crys-
tallography Computing School. University Press, 1999.

[Johnson, 1999] Johnson, C. K. Crystallographic topology 2:
Overview and work in progress. In Alexiades, V. and Siop-
sis, G., eds.,Trends in Mathematical Physics, pp. 275–306.
AMS/International Press, 1999.

[Milnor, 1963] Milnor, J. Morse Theory, vol. 51 ofAnnals of
Mathematics Studies. Princeton University Press, Prince-
ton, NJ, 1963.

[Paskoet al., 1995] Pasko, A., Adzhiev, V., Sourin, A., and
Savchenko, V. Function representation in geometric model-
ing: concepts, implementation and applications.The Visual
Computer11(8), 1995, pp. 429–446.

[Stander & Hart, 1997] Stander, B. T. and Hart, J. C. Guar-
anteeing the topology of an implicit surface polygonization
for interactive modeling. InComputer Graphics (Annual
Conference Series), Aug. 1997, pp. 279–286.

[Witkin & Heckbert, 1994] Witkin, A. P. and Heckbert, P. S.
Using particles to sample and control implicit surfaces.
In Computer Graphics (Annual Conference Series), July
1994, pp. 269–277.

57

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Compactly Supported RBFs
in the Management of Implicit
Surfaces

Terry S. Yoo
Office of High Performance Computing and Communications

National Library of Medicine, NIH

Acknowledgements

• Volume Modeling
Consortium

– Bryan Morse (BYU)

– K.R. Subramanian (UNCC)

– Penny Rheingans (UMBC)

– Kathleen Hoffman (UMBC)

– David T. Chen (NLM/NIH)

– Terry S. Yoo (NLM/NIH)

• Also
– Greg Turk (GA Tech)

– James F. O’Brien (UCB)

58

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Outline

– Summarize methods for constrained implicit
surfaces

– Some successful results

– Examine the problem posed by large data
• Deficiencies of thin-plate splines in medical modeling

– Propose alternative radial basis functions

– Results

– Future directions

Implicit Surfaces

• Build a embedding or characteristic function.

• One connected isosurface is the implicit surface.

• Related to research in level sets.

• Not an parametric or polygonal surface representation.

59

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Related Work

– Hoppe 1992

– Witkin and Heckburt 1994

– Savchenko, et al. 1995

– Turk and O’Brien 1999

– Yngve and Turk 1999

– Morse, et al. 2001

– Carr, et al. 2001

Implicit Surfaces that
Interpolate

• Savchenko, et al., 1995.
– Interpolate surfaces from scattered points or contours.

– Build their model from Green’s function.

• Turk and O’Brien, 1999
– “Variational Implicit Surfaces”

– Build their model from thin plate splines.

– Demonstrated their approach for morphing or shape
interpolation.

60

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Turk and O’Brien, 1999
Variational Implicit Surfaces

• Given: a set of oriented points (constraints)
– surface scanners, segmented medical data, etc.

• Build a linear combination of radial basis
functions (RBF) to create an embedding
function.

• Choice of RBF: thin plate splines
– Interpolates across relatively large distances.

– Energy min. thin plate deformation. (variational)

Thin-Plate Splines

– Used by Turk and O’Brien (1998, 1999), Carr 2001

– Interpolating functions that minimize smoothness
metric (“bending energy”)

– Solved using radial basis functions (Duchon, 1978)

E f() = fxx
2

s() + 2 fxy
2

s() + fyy
2

s()
s!"
ds

61

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Variational Implicit Surfaces
(continued)

3D 2D

Given: C = { c1 , c2,,…, cn}

Example: Coarse Model

62

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

How Many Points?

• Subject: Dry Skull
• Slices: 124, 512x512

• Vertices:
• 584,631
• Triangles:
• 1,169,608

Issues

• Dense data increases computational load.

• Thin plate spline interpolant limited to moderate
numbers of (20,000) constraints.

• This approach not appropriate for complex models
or large data.
– Dense modalities (CT, MRI, etc.)

– Complex surfaces: BRAIN!

• Carr, et al. 2001, limit the number of constraints

63

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Interpolating Functions

• What makes a good interpolation?
– Must go through (or near) known values.

For known constraints ci with values hi:

f(ci) = hi

– Should be “smooth”

Radial Basis Functions

• Use circularly-symmetric functions φ(r)

• Interpolate using weighted sum:

• where
– φ(r) is the radial basis function (many possible)

– ci are the centers of each component

– di are the weights of each component

– P(x) is a linear polynomial

64

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

• Linear system of equations:

• Solve Ax = b
– A is symmetric, positive definite

– Guaranteed to have a solution

– A is (n + d+1)2 for n points in d dimensions

– May not be fast to solve for large n!

Linear System for RBFs

Unknown Unknown

Thin-plate Spline
Implementation (revisited)

In 3D

Given: C = { c1 , c2,,…, cn}

Solve
for d’s
and p’s

φ(0) = 0

φ(r >> 0) = r3 >> 0

Note:

Matrix is FULL!

65

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Overview of Algorithm

• Build matrix of φ(ci-cj)
– O(n2) calculation

– O(n2) storage

• Solve matrix
– O(n3) calculation

– O(n2) calculation possible

• Extract implicit surface
– O(n) per sample

• Skull Example
– 584,632 vertices

– 584,632 normals

– 3 Dimensions

– Matrix is:
1,169,268 x 1,169,268 x
IEEE floating point word
= 5.468 Terabytes

Thin plate spline interpolant Compactly supported interpolant

Approach:
Change of RBF

• Thin-plate spline interpolant has infinite support

– not band limited

• Creates dense matrices, difficult to solve.

• Shift to compactly supported RBF with high continuity.

66

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Other Radial
Basis Functions

• Other RBFs minimize other functionals.

• Gaussian:
– Radially symmetric

– Smooth result

– Decays to zero rather than increasing

– Effect of farther-away points is less rather than more

– Matrix solution is better conditioned

Compact Local RBFs

• Can go one step further and use compact,
locally-supported radial basis functions.

• Can’t just use arbitrary functions
– Smooth

– Differentiability of resulting interpolation

– Must produce positive definite matrix

67

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Compact Local RBFs

– Wendland (1995) has solved for minimum-degree
compact functions that guarantee that the solution
matrix is positive definite.

– All of the form (can be scaled if needed)

! (r) =
1" r()

p
P(r)

0

$
%

if r & 1

otherwise

Compact Local RBFs

• Major implication: radius of support α
imposes strict locality of solution.

• Advantages during all phases of using
interpolating implicit surfaces
– Building matrix

– Solving matrix

– Evaluating embedding function

68

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Building the Matrix

– Don’t need to compute value of RBF between all
pairs of points, only those within α of each other.

– Can use spatial data structure such as k-d tree to
find “nearby” points in log n time.

– Calculation is O(n log n) vs. O(n2)

– Sparse storage: O(n) vs. O(n2)

An Egg-sample

• Egg shape, 36 points, 36 offset normals

f(x,y)

?

f(x,y) = 0

69

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Thin plate spline interpolant matrix Compactly supported interpolant matrix

Compactly Supported
RBF

– Local nature of the interpolants allows for spatial
subdivision.

– Encourages the use of advanced data structures (K-D trees
for spatial subdivision).

– Faster solvers for sparse matrices.

Solving the Matrix

• Sparse matrix solution
– Varies with the number of non-zero elements, not

the absolute size of the matrix

– Better conditioned

• Calculation is ~ O(n3/2) vs. O(n3) or O(n2)

70

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Evaluating the Function

• Don’t need to compute value of RBF for all
constraints, only those within α of the point
being evaluated.

• Again use spatial data structure such as
k-d tree to find “nearby” points in log n time.

• Calculation is O(log n) vs. O(n)
to perform a single evaluation.

Overview of Algorithm

• Build matrix of φ(ci-cj) only if ci-cj<α
– O(n log n) calculation (using k-d tree)

– O(n k) storage
where k = avg. number of points in support

• Solve matrix
– O(n k) calculation

• Extract implicit surface
– O(log n) per function eval. (using k-d tree)

71

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Comparing TPS
and CSRBFs

8000 Interpolated
to 41,864

72

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Timing: Computing the
Embedding Function
“Bunny” model TPS CSRBF
800 points 3:22 min 7.7 sec

2000 2 hrs 30.6 sec

4000 16 hrs* 132.8 sec

8000 n/a** 864 sec*

* Significantly affected by swapping
** 2GB storage required

Timing: Computing the
Embedding Function

Time to Solve Stanford Bunny Model

0

200

400

600

800

1000

1200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of points

T
im

e
 i
n

 m
in

u
te

s

Thin-plate Splines CSBRFs

73

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Why So Much Faster?

• Number of points in matrix

Points TPS CSRBF %
800 646,416 69,582 10.8%

2000 4,016,016 220,095 5.5%

4000 16,032,016 850,675 5.3%

8000 64,064,016 3,342,253 5.2%

Something to careful of...

• Compact, locally-supported RBFs produce
– Desired zero set for implicit surface

– Lots of other zeroes inside/outside one radius of
support from the surface!

• Have to be careful about seeding, extracting
the implicit surface

74

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Example: Inner Hull

Outer hull… interfering
with ray tracing?

• Ray tracing is possible
– Adjust the level set to

suppress the outside
isosurface

OR

– Apply a transfer function
to reflect only at zero
crossings with high
gradient magnitude

75

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Other Implications
for Future Work

• Faster method means interpolating implicit
surfaces are viable for medical models
– Resampling models

– More accurate model simplification

• Local support means local effect
– Incremental updating

– Interactive modeling

Future Work

– Error analysis vs. thin-plate splines

– More efficient data structures for managing spatial locality

– Other types of sparse solvers

• Using LU, could use SVD, CG, etc.

– Better ways to deal with extracting desired isosurface and
not the inner/outer hulls

– More timing studies/profiling

76

Modern Techniques for Implic it Modeling CSRBFs for Implic it Surfaces

Conclusions

– Choice of the RBF depends on application
(number of points).

– A little computer science goes a long way.

– Leads to interesting interdisciplinary work.
• computer vision, computational geometry
• computer graphics, visualization, medicine

77

Interpolating Implicit Surfaces From Scattered Surface Data
Using Compactly Supported Radial Basis Functions

Bryan S. Morse1, Terry S. Yoo2, Penny Rheingans3, David T. Chen2, K. R. Subramanian4

1Department of Computer Science, Brigham Young University

morse@byu.edu
2Office of High Performance Computing and Communications, National Library of Medicine

{yoo | dave}@nlm.nih.gov
3Department of Computer Science and Electrical Engineeering, University of Maryland Baltimore County

rheingan@cs.umbc.edu
4Department of Computer Science, University of North Carolina at Charlotte

krs@cs.uncc.edu

Abstract

We describe algebraic methods for creating implicit sur-
faces using linear combinations of radial basis interpolants
to form complex models from scattered surface points.
Shapes with arbitrary topology are easily represented with-
out the usual interpolation or aliasing errors arising from
discrete sampling. These methods were first applied to im-
plicit surfaces by Savchenko, et al. and later developed in-
dependently by Turk and O’Brien as a means of performing
shape interpolation. Earlier approaches were limited as a
modeling mechanism because of the order of the computa-
tional complexity involved. We explore and extend these im-
plicit interpolating methods to make them suitable for sys-
tems of large numbers of scattered surface points by using
compactly supported radial basis interpolants. The use of
compactly supported elements generates a sparse solution
space, reducing the computational complexity and making
the technique practical for large models. The local nature
of compactly supported radial basis functions permits the
use of computational techniques and data structures such as
k-d trees for spatial subdivision, promoting fast solvers and
methods to divide and conquer many of the subproblems as-
sociated with these methods. Moreover, the representation
of complex models permits the exploration of diverse sur-
face geometry. This reduction in computational complex-
ity enables the application of these methods to the study of
shape properties of large complex shapes.

1 Introduction

As a research field of growing interest, implicit surface
representations have a colorful history, with their founda-

tions established early in the development of 3D curves
and surfaces in computer graphics [2]. However, the com-
putation of implicit surfaces has often been hampered by
the constraints of available processing power and the lim-
ited complexity of the models that can be created. As
CPU speeds, available memory, and computing costs have
evolved, more complex models and techniques have be-
come possible, spurring general interest in implicit surfaces
[3, 6]. However, managing complex models remains dif-
ficult. The core research in modeling with implicit sur-
faces centers around primitives that do not always facili-
tate the control of the exact surface. While alternatives to
surface control through simple primitives exist, they also
have drawbacks. In their recent work on adaptive parti-
cle sampling and control of implicit surfaces, Heckbert and
Witkin [18] report that particle control of such surfaces is
slippery and elusive.

Recent growth in level set techniques [9, 12] and varia-
tional methods [7] have created new interest in understand-
ing and manipulating complex surface models directly from
the surface representation. Whitaker and Breen [17] have
shown how level set techniques can be used to model and
manipulate computer graphic shapes, effectively morphing
from one to another. They characterize the level set as an
implicit representation where the primitives are distributed
throughout an active volumetric cloud layer near the surface
boundary. They utilize Sethian’s notion of the active set, to
reduce the size of the volume representation to a sparse col-
lar of primitives. However, even with this reduction, the
representations are cumbersome, and the bookkeeping to
support these methods are intricate and difficult to maintain.

Other recent work has developed techniques for inter-
polating an implicit surface directly from surface point
data [11, 14]. This work provides some insight into how to

78

manage and employ a collection of implicit primitives while
simultaneously directly controlling the surface parameters.
This method allows direct specification of a complex sur-
face from sparse, irregular surface samples. The method is
quite flexible and has been extended to higher dimensions
to support shape interpolation [15]. However, because of
computational and storage complexity, the technique as de-
scribed cannot be used to model surfaces where large num-
bers of surface points are included, making it unsuitable for
applications where range data or tomographic reconstruc-
tion often lead to data described by hundreds of thousands
of surface points.

This paper primarily addresses the topic of computa-
tional complexity. We explore an adaptation of the meth-
ods in [11, 14], applying compactly supported radial basis
functions [16] to create an efficient algorithm for computing
interpolated surfaces. Our technique produces significant
improvements in memory utilization and computational ef-
ficiency. We discuss both the advantages of our technique as
well as the consequences or prerequisite requirements im-
posed by our methods in later sections.

This more efficient approach is creating opportunities to
explore complex shapes through implicit modeling meth-
ods. In particular, the thin-plate-spline radial basis function
and the Green’s function solutions with their order O(n2)
solutions are impractical when the number of constraints
exceeds a few thousand points. By shifting to a compactly
supported radial basis function, we can create differentiable
analytic representations of large complex models. These ef-
ficient solutions make possible techniques for studying the
deep structure of solid shapes. In the discussion section of
this paper, we present early applications of these implicit
surfaces to problems such as surface shape analysis.

2 Background / Problem

The key idea in both [11] and [14] is that one may pro-
duce an implicit surface from known surface points by inter-
polating the embedding function within which the surface is
implicitly defined. While we primarily follow here the pre-
sentation found in [14], we also encourage the interested
reader to see an alternative and earlier formulation in [11].

2.1 Interpolating Surfaces by Interpolating Em-
bedding Functions

An implicit surface is defined by {x : f(x) = 0} for
some embedding function f : IRn → IR. The key idea be-
hind interpolated implicit surfaces is to find a smooth em-
bedding function f such that f(xi) = 0 for each known
surface point xi, and f(yi) = 1 for one or more points yi

known to be inside the shape. (Alternatively, constraints of
the form f(yi) = −1 may be added for points outside the

Figure 1. Implicit curve interpolated using
zero-constraints along the curve and positive
constraints just inside these points in the di-
rection opposite the known (or desired) nor-
mals. (Figure courtesy of Greg Turk.)

shape.) Turk and O’Brien select these interior points using
normals at the surface points as shown in Figure 1.

This may be generalized to a scattered-data interpola-
tion problem as follows. Given a set of positions ci and
corresponding values hi, solve for an embedding function
f such that f(ci) = hi. Thus, surface interpolation may be
turned into higher-dimensional scattered-data interpolation,
a well-studied field.

Turk and O’Brien chose to use thin-plate splines, which
minimize the bending energy of the embedding function:
E =

∫
Ω

f2
xx(x) + f2

xy(x) + f2
yy(x) dx. They called their

method variational implicit surfaces, because they formu-
late the problem as one of variational interpolation (min-
imizing an energy functional subject to interpolative con-
straints). They did not, however, solve for the embedding
function using an iterative minimization approach but in-
stead solve for the known closed-form solution using radial
basis functions as described in Section 2.2. (Savchenko, et
al. use similar splines based on the use of Green’s function.)

2.2 Radial Basis Functions

Scattered data interpolation can be achieved using ra-
dial basis functions centered at the constraints. Radial basis
functions are circularly-symmetric functions centered at a
particular point.

Duchon [5] has shown that solving for thin-plate splines
through known points in two dimensions is equivalent to
interpolating these points using the biharmonic radial ba-
sis function φ(r) = r2 log |r| (Figure 2a). In three dimen-
sions, the thin-plate solution is equivalent to interpolating
these points using the radial basis function φ(r) = |r|3 (Fig-
ure 2b).

Radial basis functions may be used to interpolate a func-
tion with n points by using n radial basis functions centered
at these points. The resulting interpolated function thus be-

79

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

-0.2
0

0.2

0.4

0.6

-1

-0.5

0

0.5

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0

1

2

-1

-0.5

0

0.5

a) Thin-plate (2-d) b) Thin-plate (3-d)
φ(r) = r2 log r φ(r) = r3

-4

-2

0

2

4 -4

-2

0

2

4

0

0.25

0.5

0.75

1

-4

-2

0

2

-4

-2

0

2

4 -4

-2

0

2

4

0

0.25

0.5

0.75

1

-4

-2

0

2

c) Gaussian d) Compactly Supported
φ(r) = er2σ2

φ(r) = (1 − r)4+(4r + 1)

Figure 2. Comparison of different radial basis
functions

comes

f(x) =
n∑

i=1

diφ(‖x − ci‖) (1)

where ci is the position of the known values, di is the weight
of the radial basis function positioned at that point. In some
cases (including the thin-plate spline solution), it is nec-
essary to add a first-degree polynomial P to account for
the linear and constant portions of f and ensure positive-
definiteness of the solution:

f(x) =
n∑

i=1

diφ(‖x − ci‖) + P (x) (2)

To solve for the set of weights di that satisfy the known
constraints f(ci) = hi, we substitute each ci into Eq. 2:

f(ci) =
n∑

j=1

djφ(‖ci − cj‖) = hi (3)

or, if a polynomial is required:

f(ci) =
n∑

j=1

djφ(‖ci − cj‖) + P (x) = hi (4)

Solving for the weights dj using Eq. 3 and denoting φij =
φ(‖ci − cj‖) produces the following system:




φ11 φ12 . . . φ1n

φ21 φ22 . . . φ2n

...
...

. . .
...

φn1 φn2 . . . φnn







d1

d2

...
dn


 =




h1

h2

...
hn


 (5)

If a polynomial is required, Eq. 4 similarly becomes



φ11 φ12 . . . φ1n cx
1 cy

1 cz
1 1

φ21 φ22 . . . φ2n cx
2 cy

2 cz
2 1

...
...

. . .
...

...
...

...
...

φn1 φn2 . . . φnn cx
n cy

n cz
n 1

cx
1 cx

2 . . . cx
n 0 0 0 0

cy
1 cy

2 . . . cy
n 0 0 0 0

cz
1 cz

2 . . . cz
n 0 0 0 0

1 1 . . . 1 0 0 0 0







d1

d2

...
dn

px

py

pz

1




=




h1

h2

...
hn

0
0
0
0




(6)

In both Eqs. 5 and 6 the matrix is obviously real sym-
metric, and with proper selection of basis functions it can
be made positive-definite. Thus, a solution always exists to
these systems.

2.3 Algorithmic Complexity

Calculating and using implicit surfaces that interpolate
may be analyzed in three parts:

1. Constructing the system of equations,
2. Solving the system of equations, and
3. Evaluating the interpolating function (as required).

2.3.1 Constructing the System of Equations

A significant portion of the computational cost involved in
calculating these implicit surfaces is the cost required to
construct the matrix (or submatrix) φij = φ(‖ci − cj‖).
Recall that the thin-plate radial basis function is φ(r) =
r2 log r (two dimensions) or φ(r) = r3 (three dimensions).
This means that the matrix is entirely non-zero except along
the diagonal, requiring the calculation of all inter-point
distances within the set {ci}. Although the symmetry of
the matrix cuts the computational cost in half, the com-
putational complexity is still O(n2). Furthermore, storage
of such a matrix requires O(n2) floating-point values—a
potentially more prohibitive factor than the computational
complexity.

2.3.2 Solving the System of Equations

Although Turk and O’Brien use LU factorization (an O(n3)
algorithm) to solve Eq. 5, they correctly point out that it is
possible to solve this system in O(n2) by iterative means.
Thus, while solution of the system may appear to be the
limiting step, it need only be as computationally expensive
as constructing the system.

2.3.3 Evaluating the Function

For nearly all applications it is not enough to simply solve
for the weights of the respective radial basis functions.

80

Rather, it is necessary to evaluate this embedding function
at potentially many points in order to extract the isosur-
face, calculate normals or other derivative quantities, etc.
Because the terms φ(‖x − ci‖) in Eq. 1 are all non-zero
for the thin-plate solution (except for one zero term when
x ∈ {ci}), all of the terms must be used in calculating any
one point. Thus, each evaluation of the interpolated func-
tion is O(n).

2.4 Problems with the Thin-Plate Solution

While the thin-plate spline embedding function does in-
deed minimize bending energy, it has the following draw-
backs in computation and usefulness for user interaction:

1. O(n2) computation is required to build the system of
equations.

2. O(n2) storage is required (for the nearly-full matrix)
to represent the system.

3. O(n2) computation is required to solve the system of
equations.

4. O(n) computation is required per evaluation
5. Because every known point affects the result, a small

change in even one constraint is felt throughout the en-
tire resulting interpolated surface, an undesirable prop-
erty for shape modelling.

3 Using Compactly-Supported
Radial Basis Functions

Wendland [16] has recently solved for the minimum-
degree polynomial solution for compact, locally-supported
radial basis functions that guarantee positive-definiteness of
the matrix (Figure 2d). All of the solutions have the form

φ(r) =
{

(1 − r)pP (r) if r < 1
0 otherwise

(7)

For various degrees of desired continuity (Ck) and dimen-
sionality (d) of the interpolated function, he has derived the
following radial basis functions:

d = 1 (1 − r)+ C0

(1 − r)3+(3r + 1) C2

(1 − r)5+(8r2 + 5r + 1) C4

d = 3 (1 − r)2+ C0

(1 − r)4+(4r + 1) C2

(1 − r)6+(35r2 + 18r + 3) C6

(1 − r)8+(32r3′ + 25r2 + 8r + 1) C6

d = 5 (1 − r)3+ C0

(1 − r)5+(5r + 1) C2

(1 − r)7+(16r2 + 7r + 1) C4

These functions have radius of support equal to 1. Scal-
ing of the basis functions (i.e., φ(r/α)) allows any desired
radius of support α.

a)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

1.5

2

b)

-2
-1

0

1

2

-1

0

1

2

-10

-5

0

5

2
-1

0

1

c)

-2
-1

0

1

2

-1

0

1

2
0

1

2
-1

0

1

Figure 3. A simple 36-point ovoid (a) inter-
polated using thin-plate (b) and compactly-
supported (c) radial basis functions.

3.1 Example

Figure 3 illustrates using both thin-plate and compactly-
supported radial basis functions to compute embedding
functions. The constraint points consist of 36 points in an
ovoid shape with 36 normal (positive valued) constraints
placed just inside (3a). A thin-plate radial basis function
produces a globally-smooth embedding function (3b). A
compactly-supported radial basis function produces an em-
bedding function that does not have global smoothness but
is as smooth as the thin-plate spline interpolation in a nar-
row band surrounding the shape both inside and out.

3.2 Algorithm

Using compactly-supported radial basis functions pro-
vides advantages in all three phases of the implicit-surface
interpolation algorithm.

3.2.1 Constructing the system

Because the radial basis functions have finite support,
φ(‖ci − cj‖) = 0 for all (ci, cj) farther apart than the ra-
dius of support. By using a k-d tree [1], the set of all points

81

within distance r of a particular point ci can be determined
in O(log n) time.

A k-d tree is a multidimensional binary tree with the fol-
lowing sorting property for a tree with point x at the root
and subtrees Tleft and Tright.

∀y ∈ Tleft : yd ≤ xd

∀y ∈ Tright : yd > xd

where the sorting dimension d changes at each level of the
tree.

k-d trees can be used to find all points within distance r
of a particular constraint in O(n log n) time using the fol-
lowing algorithm (C pseudocode):

void Search (KDtree T, Point P, int radius)
{

if (T->point[T->dim]) < P[dim] + radius)
Search(T->right);

if (T->point[T->dim]) > P[dim] - radius)
Search(T->left);

Test(T->point,P,radius);
}

While a number of points must still be tested explicitly,
the multidimensional sorting nature of the k-d tree allows
a large number of points to be rejected at each level of the
tree.

The resulting matrix is extremely sparse, as shown in
Figure 4. Using a sparse-matrix representation (we use the
Hartwell-Boeing format), only O(n) storage is required.

3.2.2 Solving the system

If the average number of points within the radius of sup-
port of each constraint ci is less than some constant k, the
number of non-zero entries in the matrix is O(n). We use
a direct (LU) sparse matrix solver [4] to find the solution to

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Thin-plate Compactly-supported

Figure 4. Structure of the matrices produced
by thin-plate and compactly-supported radial
basis functions (Figure 3). The compactly-
supported basis function produce a matrix
that is sparse (black), while the thin-plate ba-
sis functions produce a matrix that is nearly
full (white).

the system of equations. The computational complexity of
such a solver depends on the amount of matrix “fill in” that
occurs during the solution, but some authors have reported
behavior in the range O(n1.2) to O(n1.5) [10]. Our own
experience (Section 4) agrees with this.

3.2.3 Evaluating the interpolating function

We can exploit the spatial locality of the compactly-
supported radial basis functions during evaluation of the
embedding function f by recognizing that only a fraction of
the terms of Eq. 1 are non-zero for a given x: φ(ci − cj)
=
0 iff ‖ci − cj‖ < 1. By again using a k-d tree to organize
the constraints spatially, each evaluation of the interpolat-
ing function requires only O(log n) operations to determine
these non-zero terms.

3.3 Thin-Plate vs. Compactly-Supported
Radial Basis Functions

Using compactly-supported radial basis functions di-
rectly addresses each of the five problems identified previ-
ously with the thin-plate spline basis functions (Section 2.4)
as follows:

Thin-plate Compact
Computation to build O(n2) O(n log n)
Computation to solve O(n2) O(n1.5)
Storage to build/solve O(n2) O(n)
Computation to evaluate O(n) O(log n)
Effect of a single point Global Local

4 Results

Figure 5 compares the results of interpolating an 800-
point model of the Stanford bunny using both thin-plate and
compactly-supported radial basis functions. The results of
of the two methods are qualitatively identical.

Interpolation of larger models is possible using
compactly-supported radial basis functions. The 8000-
point model in Figure 6 was interpolated using compactly-
supported radial basis functions, and the resulting isosur-
face was tesselated to 41,864 points.1 The interpolated im-
age shows sharpness and detail hidden by the flat polyhedra
of the original model.

Table 1 summarizes the time required to calculate vari-
ous differing-resolution models of the same figure (Stanford
bunny). The radius of support used for each model was se-
lected so as to keep the number of points in the radius of

1A similar thin-plate interpolation would require almost 2 GB of stor-
age for the matrix alone and could not be calculated on our system.

82

800-point model Interpolated (thin-plate) Interpolated (compact)

Figure 5. Comparison of original model to implicit surfaces extracted from embedding functions
calculated using both thin-plate and compactly-supported basis functions. The results of the inter-
polations are qualitatively identical.

8000-point model Interpolated to 41,864 points

Figure 6. Interpolation of an 8000-point model of the Stanford bunny

83

Points Constraints Radius Non-zero Per Row % Full Build k-d Build Matrix Solve Matrix Total
2922 5848 0.200 476173 81.4 1.39% 0.02 1.05 5.93 7.00
5839 11682 0.150 973423 83.3 0.71% 0.04 2.09 17.29 19.42

11831 23666 0.100 1663733 70.3 0.30% 0.08 4.00 45.44 49.52
35947 71898 0.004 5061542 70.4 0.10% 0.93 31.51∗ 284.01∗ 316.45∗
∗ some virtual memory swapping

Table 1. Execution times in seconds for various phases of computation for interpolated implicit
surfaces using compactly-supported radial basis functions.

Computational Complexity

0

20

40

60

0 10000 20000 30000 40000

Number of points

T
im

e
^

2/
3

(s
ec

on
ds

)

Figure 7. Timing results for four different-resolution models of the same figure (Table 1). The linear
graph when plotted on a time

2
3 vertical axis indicates O(n1.5) complexity.

Thin-Plate Compactly-Supported
Points Build Solve Points Build Solve
800 0.58 sec 2.56 min 800 0.57 sec 1.53 sec
2000 6.3 sec 2:05 hrs 2922 1.07 sec 5.93 sec
4000 25.0 sec 16:11 hrs∗ 5839 2.13 sec 17.29 sec
8000 n/a (1) n/a 11831 4.08 sec 97.53 sec
35947 n/a (2) n/a 35947 31.44 sec 284.01 sec
∗ significant virtual memory swapping

Table 2. Comparison of execution times required to calculate embedding functions using thin-plate
vs. compactly-supported radial basis functions

Thin-Plate Compactly-Supported
Points Memory (MB) Points Memory (MB)
800 19.5 800 1.0
2000 122.1 2922 3.6
4000 488.3 5839 7.4
8000 1,953.1 11831 12.7
35947 39,434.4 35947 38.6

Table 3. Comparison of memory requirements (matrix only, double-precision floating-point values)
required to calculate embedding functions using thin-plate vs. compactly-supported radial basis
functions

84

support (approximately) constant, thus allowing compari-
son of the results. The dominant term in the required com-
putation is the time to solve the system of equations, which
seems to demonstrate O(n1.5) complexity (Figure 7).

Table 2 compares these running times to the time re-
quired to calculate comparable thin-plate interpolations (us-
ing same-size or smaller models). The O(n2) time required
to compute these models using thin-plate radial basis func-
tions quickly becomes prohibitive.

Similarly, Table 3 compares the memory required to rep-
resent the matrix for the models described in Table 2. As
with the computational complexity, the O(n2) storage re-
quired to compute these models using thin-plate radial basis
functions also quickly becomes prohibitive.

5 Considerations

The finite nature of the compactly-supported radial ba-
sis functions introduces two factors that must be considered
when using them to interpolate embedding functions.

5.1 Selecting the Radius of Support

The finite radius of support introduces an additional pa-
rameter that doesn’t exist in the thin-plate implementation.
Proper selection of the radius of support is critical to achiev-
ing optimal efficiency of computation and results. Too small
a radius can produce basis functions that are unable to span
the inter-constraint gaps. Too large a radius does not ad-
versely affect the results but reduces the sparseness of the
matrix, thus increasing the computation required. It is thus
necessary to select a radius of support that is both large
enough to produce effective results and not so large that the
computation becomes impractical.

5.2 Isosurface Extraction

Because of the finite extent of the compactly-supported
radial basis functions, only those points within the radius of
support of one of the original positions have non-zero val-
ues. For all points outside this band, all of the terms of Eq. 1
are zero. (Figure 3c illustrates this.) In this way, these em-
bedding functions are not the same as those normally used
for implicit surfaces—the implicit surface represented is not
the only set of zero-valued points in the space. However,
the implicit surface does form a unique contiguous locus
of zero-valued points passing through the constraints. In
this sense, the method presented here is somewhat similar
to the narrow-band active set approach of Sethian [12] or
Whitaker and Breen [17].

An isosurface extractor may be used to extract this sur-
face by seeding it with any one of the initial constraints.
However, care must be taken so that the step size of the

extractor does not cause it to jump outside the band of non-
zero points. It is, however, rather easy to explicitly recog-
nize when no non-zero terms are found in Eq. 1 (none of
the constraint points lie within the radius of support of the
point being evaluated).

Because the surface of interest is not the only zero set
of the embedding function, the resulting embedding func-
tion has limited application in CSG, interpolation [15], or
similar applications. However, we are experimenting with a
hybrid approach that interpolates a subset of the points us-
ing radial basis functions with infinite support and the dif-
ference using basis functions with compact support.

6 Discussion: Analytic Approaches Enabled
by Efficient Algorithms

An efficient framework for finding embedding functions
that define implicit surfaces from scattered data points in-
creases the practicality of studying complex shape models
represented by large numbers of such points. Models cap-
tured from physical phenomena usually contain large num-
bers of surface points, polygons, or other surface primitives
that are not easily reduced. For instance, polygonal repre-
sentations of medical data often begin with models contain-
ing millions of triangles, which can later be simplified to
hundreds of thousands of polygons.

While the polygonal representations of these models
can be rendered using current graphics hardware, the dis-
crete sampling introduced by the process of producing the
polyons raises barriers to deeper studies of the geometry of
the surfaces themselves. Implicit methods solve this dif-
ficulty by creating analytic functions that smoothly recon-
struct a surface from a constellation of points. In addi-
tion, the implicit surface constructed using the method pre-
sented here is differentiable. Local surface geometry now
becomes approachable since numerically stable solutions
can be found to sample higher order derivatives of the im-
plicit surface.

6.1 Differential Geometry of Shape

Differential geometry is the study of multilocal surface
behavior, employing the normal vector and tangent plane at
each surface point as a reference environment. Curvature
and other geometric features relative to the surface tangent
are measured using second order derivatives [13]. Volumet-
ric approaches can compute approximations to these mea-
surements based on discretely sampled grids [12]. How-
ever, the accuracy and behavior of the sampled derivatives
is subject to aliasing and sampling issues, exacerbated by
the noise-amplifying effects of higher-order functions.

Implicit surfaces allow us to reconstruct smooth surface
representations from a set of oriented points and sample

85

Figure 8. Gaussian curvature computed over
an analytically-defined implicit surface calcu-
lated from scattered surface points

higher order derivatives with instantaneous precision. An-
alytic representations of not only surface shape, but also of
the embedding function, simplifies the computation of the
normal vector, the tangent plane, and the principal curva-
tures of the implicit surface at any arbitrary location.

Figure 8 shows the Gaussian curvature (the product of
the principal curvatures) of an array of implicit surfaces cal-
culated using the method presented here. Blue areas repre-
sent positive Gaussian curvature (elliptical regions) and red
areas represent negative Gaussian curvature (hyperbolic or
saddle-shaped regions). The yellow contour lines indicate
the places where the Gaussian curvature is zero, separating
the red and blue surface regions. The yellow contours de-
note parabolic curves where specular and diffuse highlights
fuse or reproduce under changing lighting conditions.

Note: the polygonalization of the surface and the inter-
polation errors are artifacts of the visualization technique.
The implicit surface itself can be sampled with arbitrary
precision to generate smooth models with correspondingly
smooth representations of curvature.

6.2 Future Directions: Scale Space, Ray Tracing,
and Other Topics

Linear scale space filtering was introduced by
Witkin [19] as a means of measuring the saliency of
features within an image. Further work established the
general field of scale-space theory in computer vision [8].
The fundamental notion of such analysis is that significant
details of an image (or surface representation) persist as
the scale or the measurement aperture is increased. In the
pursuit of multiscale image descriptions, a Gaussian kernel
is usually used as the measurement aperture function.

Figure 9. A dumbell figure reconstructed from
sample points and represented at succes-
sively larger scales by convolving the embed-
ding function with successively larger Gaus-
sian kernels

From this perspective, a scale space representation of the
implicit models presented in this paper can be constructed
as a convolution of a Gaussian kernel with the embedding
function, f(x̄)⊗g(x̄, σ). Since convolution is both commu-
tative and distributive with respect to addition, this is equiv-
alent to convolving each of the radial basis interpolants with
a Gaussian. This process can be approximated by solving
for the implicit surface with a particular radius of support,
and later dilating the compactly supported radial basis func-
tion during the evaluation to create a scale space level set
representation of the basic function.

Figure 9 shows a 2-D implicit figure represented at a
range of scales. The original model has been reconstructed
from oriented points as an implicit surface. In the sub-
sequent representations, the embedding function has been
convolved with an approximation to a Gaussian kernel, and
the implicit surface reconstructed. Fine details such as the
corners and discontinuities associated with the cross mem-
ber in the figure are suppressed at moderate scales. Even-
tually at the largest scales, the figure is viewed as a single
topologically simple object. This approach to representing
object shape may have applications in modeling and com-
puter graphics in the representation of objects at multiple
levels of detail.

Beyond the application of scale-space image-analysis
techniques to implicit surface representations, there remain
interesting problems of rendering these models. Implicit
surfaces based on signed distance functions and other em-
bedding functions with similar properties are easily ren-
dered through ray tracing. Because of the multiple zero
level sets created by the compactly supported radial basis
function approach, a basic ray tracing method is insuffi-
cient for rendering these models. However, in the visual-

86

ization of discrete volume data, complex transfer functions
that include geometric information such as gradient magni-
tude and isosurface curvature are able to capture surfaces
based on features other than simple isovalues. Future work
will include the development of transfer functions for ray-
cast rendering of these models.

7 Conclusion

Given a set of points C = {c1, c2, . . . cn} and associated
normals, the method presented here interpolates an implicit
surface through those points by finding a scalar embedding
function f(x) whose zero level set, {x : f(x) = 0}, passes
through all points in C. Following Turk and O’Brien [14]
(see also [11]), we employ radial basis interpolating func-
tions in a linear system of 2n equations and 2n unknowns,
expressed as an 2n × 2n matrix. Unlike the original use of
φ(r) = |r|3 as the underlying interpolant, we use a fam-
ily of radial basis functions with the necessary continuity
but also with compact local support. The result is a sparse
system whose solution can be accelerated. The result is a
single, accelerated, closed form analytic representation of
the desired surface.

The shift from a radial basis function of infinite extent
to a compactly supported one creates dramatic gains in
memory utilization and computational complexity. Previ-
ous work described solutions for systems of equations of
order O(n2) complexity. The shift to finite interpolants and
sparse matrices has shifted the complexity of the matrix so-
lution to order O(n1.5), the loading of the matrix data struc-
tures to O(n log n), and the memory requirements to order
O(n). Evaluation of the interpolated embedding function is
similarly reduced to O(log n).

These improvements in efficiency make possible a vari-
ety of applications that were previously impractical with an
infinite radial basis function. We have briefly surveyed our
first probes into the differential geometry of surface shape
and explorations in scale space analysis of complex models
using implicit surfaces interpolated from scattered surface
data points.

Acknowledgments

This work was performed in large part at the National Li-
brary of Medicine under a visiting faculty program support-
ing both Dr. Morse and Dr. Subramanian. Dr. Rheingans
was supported in part by NSF CAREER Grant #9996043.
We would like to thank Greg Turk for his useful conversa-
tions and for making his code available to us, upon which
our implementation is based. We would also like to thank
Dr. Michael Ackerman and the staff of NLM’s Office
of High Performance Computing and Communications for
their help and support. Finally, we would like to thank the
reviewers and program committee for SMI2001 for their
many helpful suggestions.

References

[1] J. L. Bentley. Multidimensional binary search trees used for
associative searching. CACM, 18(9):509–517, 1975.

[2] J. Blinn. A generalization of algebraic surface drawing. IEEE
Transactions on Graphics, 1(3):235–246, 1982.

[3] J. Bloomenthal, editor. Introduction to Implicit Surfaces.
Morgan-Kaufman, 1997.

[4] J. J. Dongarra, J. D. Croz, S. Hammarling, and I. Duff. A set
of level 3 Basic Linear Algebra Subprograms. ACM Trans-
actions on Mathematical Software, 16(1):1–17, Mar. 1990.

[5] J. Duchon. Sur l’erruer d’interpolation des fonctions de
plusieurs variables par les dm splines. R.A.I.R.O Analyse nu-
merique, 12(4):325–334, 1978.

[6] J. Hart and e. D. Ebert. New Fontiers in Modeling and Tex-
turing. Siggraph 97 Course Notes, 1997.

[7] B. Kimia, A. Tannenbaum, and S. Zucker. On optimal control
methods in computer vision and image processing. In B. t.H.
Romeny, editor, Geometry Driven Diffusion in Computer Vi-
sion, pages 307–338. Kluwer, 1994.

[8] T. Lindeberg. Scale-space theory in computer vision. Kluwer
Academic Publishers, 1994.

[9] S. Osher and J. A. Sethian. Fronts propogating with curva-
ture dependent speed: Algorithms based on Hamilton-Jacobi
formulation. J. Comput. Phys., 79:12–49, 1988.

[10] R. A. Saleh, K. A. Gallivan, M. Chang, I. N. Hajj, D. Smart,
and T. N. Patrick. Parallel circuit simulation on supercom-
puters. Proceedings of the IEEE, 77(12):1915–1930, 1989.

[11] V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Ku-
nii. Function representation of solids reconstructed from scat-
tered surface points and contours. Computer Graphics Fo-
rum, 14(4):181–188, 1995.

[12] J. A. Sethian. Level Set Methods: Evolving Interfaces in
Geometry, Fluid Mechanics, Computer Vision, and Material
Sciences. Cambridge University Press, 1996.

[13] J. Thirion. New feature points based on geometric invariants
for 3d image registration. Technical Report INRIA-RR-1901,
INRIA, 1993.

[14] G. Turk and J. F. O’Brien. Variational implicit surfaces.
Technical Report GIT-GVU-99-15, Georgia Institute of Tech-
nology, 1998.

[15] G. Turk and J. F. O’Brien. Shape transformation using varia-
tional implicit surfaces. In Computer Graphics Proceedings,
Annual Conference Series, 1999.

[16] H. Wendland. Piecewise polynomial, positive definite and
compactly supported radial functions of minimal degree.
AICM, 4:389–396, 1995.

[17] R. Whitaker and D. Breen. Level-set models for the defor-
mation of solid objects. In The Third International Workshop
on Implicit Surfaces, pages 19–35. Eurographics, 1998.

[18] A. Witkin and P. Heckbert. Using particles to sample and
control implicit surfaces. In A. Glassner, editor, SIGGRAPH
’94 Proceedings, Computer Graphics Proceedings, Annual
Conference Series, pages 269–278. ACM SIGGRAPH, ACM
Press, July 1994.

[19] A. P. Witkin and J. M. Tenenbaum. On the role of structure in
vision. In J. Beck, B. Hope, and A. Rosenfeld, editors, Hu-
man and Machine Vision, pages 481–543. Academic Press,
New York, NY, 1983.

87

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Implicit Modeling with PDE-based
Techniques

Haixia Du
Office of High Performance Computing and Communications

National Library of Medicine

National Institute of Health

Overview

• Advantages of PDE-based techniques
• PDE formulation: from parametric to implicit
• Data and derivative constraints for implicit PDE
• Implicit PDE-based shape design, reconstruction

and control
• Numerical methods to solve PDEs
• Conclusion and future work

88

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Partial Differential Equation (PDE)

• A PDE example
– 2D Laplace’s equation:

• PDE-based techniques
– Consider differential property

– Behavior of objects are governed by PDEs

PDE Classifications

• B²-AC>0: hyperbolic
– Wave equation

• B²-AC=0: parabolic
– Diffusion equation

• B²-AC<0: elliptic
– Poisson equation

89

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

PDE Classifications

• Initial value problem
– Given information at ,

the solution will
propagate forward in time

• Boundary value problem
– Given boundary

information

– Solution will be a static
function within the region

PDE Classifications

Poisson
equation

Boundary value
problem

Diffusion
equation

Wave
equation

Initial value
problem

Elliptic
PDE

Parabolic
PDE

Hyperbolic
PDEPDE types

90

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

PDE-based Techniques for Graphics

• Image processing

[Bertalmio et al. 00]

PDE-based Techniques for Graphics

• Image processing

• Simulation and animation

[Foster and Metaxas 97]

91

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

PDE-based Techniques for Graphics

• Image processing

• Simulation and animation

• Visualization

[Kindlmann et al. 00]

PDE-based Techniques for Graphics

• Image processing

• Simulation and animation

• Visualization

• Geometric modeling

[Schneider and Kobbelt 00]

92

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Advantages of PDE-based
Techniques

• Formulate natural physical process

• Satisfy continuity requirements

• Minimize energy functionals

• Use boundary/initial information without additional
specifications

• Provide intuitive and natural control

• Unify geometric and physical attributes

Motivation

• Maximizing modeling potentials of boundary-value
PDEs and implicit functions

• General boundary constraints for various
applications of implicit models

• Global and local control and manipulation for
implicit shape modeling

93

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Contributions

Shape
Sculpting

Shape
Blending ……Data

Recovery
Model

Reconstruction
Shape
Design

Applications:

Implicit PDE Model

Modeling Techniques:

Implicit FunctionsParametric PDEs

Related Work: PDE Surfaces and
Solids
• Blending problem [Bloor and Wilson 89]
• Free-form surfaces [Bloor and Wilson 90]
• PDE solids [Bloor and Wilson 93]
• Interactive design [Ugail et al. 99]
• Physics-based interactive and direct surface

sculpting [Du and Qin 00a, 00b, 05]
• PDE-based free-form deformation [Du and Qin 01]
……

94

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Parametric PDE Surfaces

• PDE surface formulation

Biharmonic equation if blending coefficient a(u,v)=1

• Boundary conditions

Parametric PDE Surfaces

Boundary
curves

Derivative
curves

95

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Parametric PDE Surfaces

Parametric
Space

Object Space

Parametric PDE Solids

• PDE solid formulation

• Free-form deformation

96

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Parametric PDE Solids

• Boundary conditions:
– Surfaces:

– Curve network:

 Corresponding PDE
solid

Boundary
surfaces

x

z

y

PDE Solid from Boundary Surfaces

97

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

PDE Solid from Boundary Curves

Implicit PDE Model

• Implicit PDE formulations:

– d(x,y,z): the intensity function in the 3D physical space

– Not level-set method

– Model the entire implicit working space

98

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Boundary Constraints

• Generalized boundary constraints
Boundary information, volumetric data, sketch curves,

unorganized scattered data points

• Initialization of working space
Finite-difference method (FDM), radial basis function (RBF)

interpolation, distance field approximation, ...

• Smoothing and manipulation with FDM

Boundary Constraints

• Categorized based on applications
– Traditional boundary conditions (cross-sectional constraints)

– Boundary constraints for shape blending

– Arbitrary sketch curves for implicit shape design

– Unorganized scattered data points for model reconstruction

99

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Traditional Boundary Conditions

• Intensity values at
boundaries

• Cross-sectional slices
(optional)

• Can be solved using
iterative method for
FDM directly

Traditional Boundary Conditions

100

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Traditional Boundary Conditions

Boundary Constraints for Blending

• Shapes to be blended
in the working space

• Most information are
given

• Only blended parts
need to be computed

• Solve: FDM

101

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Boundary Constraints for Blending

Sketch Curve Constraints

• A set of 3D sketch
curves to define implicit
shape

• Boundary values of
working space are
unknown

• Initialization: RBF
method

• Manipulation: FDM

102

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Sketch Curve Constraints

Local RBF Method

• RBF method defines global shape
– Difficult for complex models

– Compactly supported RBF calculates only a band around
the data set

• Solution:
– Perform RBF method at local regions

– FDM for smoothing the entire working space

– Arbitrary implicit shape blending

103

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Local RBF Method

Scattered Point Constraints

• Define shapes by a set of
unorganized points

• Boundary values of working
space are missing

• Initialization: distance field
approximation (tagging
algorithm [Zhao et.al. 01])

• Manipulation: FDM

104

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Scattered Point Constraints

Manipulation of Implicit PDE Objects

• Sketch curve sculpting
– Shape, intensity, and gradient directions

• Blending coefficient manipulation
• Direct manipulations

– Iso-contour deformation

– Regional modification

– CSG tools

– Gradient sculpting

– Curvature manipulation

105

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Sculpting of Sketch Curves

Gradient Information of Sketch
Curves
• For RBF initialization
• Gradient direction defines the increasing and

decreasing directions of intensity distributions
• Changing gradient direction will change the implicit

shape
n

g

p3
p1

p2

106

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Changing Gradient Directions

Direct Intensity Sculpting

107

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Direct CSG Manipulations

Implicit Gradient Sculpting

108

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Curvature Manipulations

Numerical Techniques

• Spectral approximation

• Finite-element method (FEM)

• Finite-difference method (FDM)

109

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Spectral Approximation

• Finite sum of closed-form functions + remainder

• Globally defined function

• Infinitely differentiable

• A closed band subject to periodic boundary
conditions for 2D parametric PDE

• Separation of variables

Spectral Approximation

() () ()

() () () ()[]!
=

++=

+=

N

n

nn
nvunvuuu,v

u,vu,vu,v

1

)sin()cos(BAAF

RFX

0

() () () () () wuwuwuwu
uevevuevevu,v

!! +++=
4321
rrrrR

()

()

() anu

n

anu

n

anu

n

anu

nn

anu

n

anu

n

anu

n

anu

nn

eueuueeu

eueuueeu

uuuu

!!

!!

+++=

+++=

+++=

3

4

2

321

3

4

2

321

3

03

2

0201000

bbbbB

aaaaA

aaaaA

110

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Finite Element Method

• Approximate the infinite problem by interpolation
functions over sub-domains
– Discretize the domain into sub-domains

– Select the interpolation functions

– Formulate the system of equations

– Solve the equations for coefficients of the interpolation to
approximate the solution

Typical Finite Elements

111

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Finite Difference Method

• Divides the working space into discrete grids

• Samples the PDE at grid points with discretized
approximations

• Forms a set of algebraic equations

• Uses iterative techniques and multi-grid algorithm
to improve the performance

Working Space Discretization

(i,j,k-2)

(i-1,j,k) (i,j,k) (i+1,j,k)
(i-2,j,k) (i+2,j,k)

(i,j+2,k
)

(i,j-2,k)

(i,j+1,k)

(i,j-1,k)

(i,j,k+1
)

(i,j,k+2)x
z

y

(i,j,k-
1)

112

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Finite Difference Approximations

Difference Equations

• Constrained system:
– Enforcing additional constraints by replacing the original

equations by constraints

113

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Solving Difference Equations

• Iterative methods
– Gauss-Seidel iteration

– Successive over-relaxation (SOR) iteration

• Multi-grid method improvement
– Starting from coarsest grids
– Linearly interpolating the coarse solution to get initial

guess of finer resolution

Finite Difference Method

• Simple and easy for implementation

• Allows flexible and generalized boundary
conditions and additional constraints

• Enables local control and direct manipulation

• Guarantees an approximate solution

• Time performance depends on resolution of
discretization of working space

• Possible improvement by parallel computing

114

Modern Techniques for Implic it Modeling Implic it Modeling with PDE-based Techniques

Conclusion

• Unify Implicit functions and boundary-value PDE
models

• General constraints for shape design,
reconstruction, blending, and recovery

• Global and local implicit shape modeling with
numerical techniques

• Intuitive and interactive sculpting toolkits
Sketch curve sculpting, direct manipulation of implicit objects,

blending coefficient control

Future Work

• Hierarchical structure to model features and details

• More efficient solver for implicit PDE

• Implicit PDE-based shape transformation

• Manipulation tools with haptics

……

115

A shape design system using volumetric implicit PDEs

Haixia Du*, Hong Qin

Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY, USA

Received in revised form 12 October 2003; accepted 9 January 2004

Abstract

Solid modeling based on partial differential equations (PDEs) can potentially unify both geometric constraints and functional requirements

within a single design framework to model real-world objects via its explicit, direct integration with parametric geometry. In contrast,

implicit functions indirectly define geometric objects as the level-set of underlying scalar fields. To maximize the modeling potential of PDE-

based methodology, in this paper we tightly couple PDEs with volumetric implicit functions in order to achieve interactive, intuitive shape

representation, manipulation, and deformation. In particular, the unified approach can reconstruct the PDE geometry of arbitrary topology

from scattered data points or a set of sketch curves. We make use of elliptic PDEs for boundary value problems to define the volumetric

implicit function. The proposed implicit PDE model has the capability to reconstruct a complete solid model from partial information and

facilitates the direct manipulation of underlying volumetric datasets via sketch curves and iso-surface sculpting, deformation of arbitrary

interior regions, as well as a set of CSG operations inside the working space. The prototype system that we have developed allows designers

to interactively sketch the curve outlines of the object, define intensity values and gradient directions, and specify interpolatory points in the

3D working space. The governing implicit PDE treats these constraints as generalized boundary conditions to determine the unknown scalar

intensity values over the entire working space. The implicit shape is reconstructed with specified intensity value accordingly and can be

deformed using a set of sculpting toolkits. We use the finite-difference discretization and variational interpolating approach with the localized

iterative solver for the numerical integration of our PDEs in order to accommodate the diversity of generalized boundary and additional

constraints.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Partial differential equation techniques; Implicit functions; Volume graphics; Shape design; Geometric constraints; Scattered data fitting

1. Introduction

Partial differential equation (PDE) techniques are widely

used for many visual computing applications, such as nature

phenomena simulation and animation [17], variational

fairing [35], image inpainting [2], etc. They also provide

an alternative way for geometric design [5–7,45]. Different

from traditional geometric representations, the PDE

methods model graphical objects as solutions of certain

elliptic PDEs with boundary constraints inside the para-

metric domain. The parametric PDE model simplifies the

geometric design process by using only boundary conditions

to recover the whole interior information and offers high-

order continuity as well as energy minimization properties.

However, it is extremely difficult to model arbitrary shapes

of general topology, because the PDEs are defined over

regular parametric domain, like traditional parametric

approaches.

In contrast, implicit functions use level-sets of certain

scalar field functions in the physical domain directly to

design, model, and interact with 3D objects, without

constructing the mapping between parametric and physical

spaces. They offer a fundamentally different yet convenient

and natural design paradigm (in comparison with parametric

representations) in visual computing fields such as graphics,

animation, and geometric design. This is because of their

unique properties such as arbitrary topology, collision

detection, free of parametric correspondence, etc. Appli-

cations of implicit functions include shape blending, surface

reconstruction from scattered data points, shape transform-

ation, and interactive modeling [3,4,8–10,12,13,18,21,22,

26,27,29,30,32,36,39,40,43,44,47].

Implicit functions offer several modeling advantages

such as flexible topology, simple data structure, efficient

0010-4485/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cad.2004.01.009

Computer-Aided Design 36 (2004) 1101–1116

www.elsevier.com/locate/cad

* Corresponding author.

E-mail addresses: dhaixia@cs.sunysb.edu (H. Du); qin@cs.sunysb.edu

(H. Qin).

116

http://www.elsevier.com/locate/cad

storage, volumetric information, unbounded geometry, etc.

Nonetheless, most of implicit functions focus on surface

models. Previous techniques for interactive implicit volume

sculpting have certain modeling limitations. Recently,

Cutler et al. [11] presented a procedural framework for

specifying layered solid models and applying a series of

simulation operations (serving as sculpting tools described

by a script language) to complex models. Bærentzen and

Christensen [1] developed an interactive volume sculpting

system using level-set method. Museth et al. [28] proposed

level-set-based editors for CSG operations, blending,

embossing, and smoothing for implicit surfaces. However,

these tools are associated with the specification of speed

functions for the evolving level-set, which are non-intuitive

for common users. Turk and O’Brien [41] presented

interactive implicit surface sculpting via particles, but

each operation requires reformatting and recalculation of

the entire system, which is difficult to model large datasets.

In general, the modeling potential of implicit functions has

not been fully explored yet and there are still difficulties to

design, reconstruct, and sculpt implicit models directly and

intuitively.

To maximize the modeling capabilities of PDE

techniques and implicit functions in geometric and visual

computing areas, we propose a more general PDE-based

modeling paradigm which integrates the PDE techniques

with implicit functions into one single framework for

interactive shape design and manipulation on PDE-based

volumetric implicit models. We develop an implicit

modeling system governed by elliptic PDEs of scalar

intensity fields. In particular, our prototype system can

reconstruct implicit objects and the embedding implicit

3D working space as approximated solutions of the PDEs

by specifying a set of curve outlines or scattered data

points of certain intensity values as general boundary

constraints with the assistance of variational interpolating

approaches. Because the curves and datasets are not

required to be closed, open surfaces can be modeled

within our system. Moreover, it offers a set of sculpting

toolkits to manipulate implicit objects, such as interac-

tively modifying the geometric shape, intensity value,

and gradient direction of selected sketch curves, directly

changing intensity values of selected regions in the

working space, as well as deforming iso-contours at

specified intensity values of the objects. Because the

working space is governed by the PDEs, any missing

information inside the space can be recovered by solving

the PDEs according to the given constraints. Our system

is able to recover damaged datasets using partial

information, smooth the intensity distribution of volume

data, and smoothly blend objects inside the working

space. In general, our system allows intensity manipula-

tions at any iso-value anywhere in the implicit working

space to model implicit objects either directly or

indirectly, which offers users both local and global

control of the implicit PDE model.

This implicit PDE approach has modeling advantages of

both parametric PDE techniques and implicit functions.

First, the behavior of the implicit PDE model is governed by

differential equations. Solving the PDEs results in both

boundary and interior information simultaneously, which

offers an alternative way to model implicit objects by using

only boundary information. This property makes the PDE

method extremely suitable for shape blending process.

Second, many natural physical processes are characterized

by differential equations in principle [19,20,37]. Hence,

PDE models are natural and close to the real world. They are

potentially ideal candidates for design, simulation, and

analysis tasks. Furthermore, geometric objects with high-

order continuity requirements can be readily defined

through high-order PDEs because of their differential

properties. Third, smooth objects that minimize certain

energy functionals are the solutions of differential equations

from the variational analysis point of view, so optimization

techniques can be unified with PDE models. In addition,

because the implicit PDE is formulated on a scalar intensity

field and defines objects by collecting points of certain iso-

values, it is capable of designing arbitrary topological

shapes and recovering the full information from partial

input, which reduces the burden of specifying the large

quantity of constraints for complete datasets. It offers users a

natural way to design objects easily with general non-

isoparametric arbitrary curve outlines, reconstruct objects

from scattered data points, blend shapes in the working

space, and recover damaged datasets.

The remainder of the paper is structured as follows.

Section 2 reviews the related work of PDE techniques and

implicit models. We detail the PDE formulation and present

our integrated approach for implicit PDE objects in Section

3. We introduce possible applications of our implicit PDE

model by enforcing different types of boundary and

additional constraints in Section 4. Section 5 discusses

techniques of directly manipulating implicit PDE objects

with constraints to construct more flexible topological

shapes, such as sketch sculpting and local region manipula-

tions. We outline the system implementation in Section 6.

2. Related work

Different from traditional free-form spline-based model-

ing techniques, Bloor and Wilson [5] introduced a method

that defines smooth surfaces as solutions of elliptic PDEs.

Since its initial application on surface blending, the PDE

approach has broadened its applications for free-form

surface design, solid modeling, and interactive surface

editing [6,7,42] during the past decade. In principle, the

PDE-based method has the advantage that most of the

information defining an object comes from its boundaries.

This permits an object to be generated and controlled by a

very few parameters such as boundary-value conditions and

global coefficients associated with an elliptic PDE. This

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–11161102

117

PDE technique was then used for modeling parametric

surfaces and solids with global geometric features. To

obtain interactive sculpting and local control, we [14,15]

proposed an integrated model which combined PDE

surfaces and physics-based modeling techniques to offer

users direct manipulation for the PDE surfaces with

generalized boundary constraints and user-specified fea-

tures. We [16] extended the PDE technique’s coverage from

surfaces to solids in order to provide users a set of direct

editing toolkits to model the real-world objects with interior

material distribution. Zhang and You [45] investigated three

different orders, i.e. second, mixed, and fourth-order of

PDEs as surface representation techniques and demon-

strated the use and effectiveness of the PDE method for free-

form surface design.

However, because the aforementioned PDE methods

define objects over the regular parametric domain, they (like

other parametric representation techniques) have limitations

in handling arbitrary topological shapes, which can be easily

achieved by implicit functions.

Implicit functions offer a different way for shape

modeling by using certain scalar field functions to define

geometric entities. In the past several years, implicit

functions have been widely developed as a powerful design

and manipulation tool for graphical models. In 1994, Witkin

and Heckbert [44] introduced an approach using particles to

sample and control implicit surfaces. A set of particles are

locked onto a surface and act as control points for the

implicit surface. The surface shape can be manipulated by

moving particles interactively. Ferley et al. [18] presented a

sculpture metaphor for rapid shape prototyping. In their

approach, the sculpted shape is defined as the iso-surface of

a spatially sampled scalar field and can be manipulated by

adding, removing, painting, or smoothing material and

applying free-form and stamp tools. These techniques only

provide interactive and practical sculpting tools for implicit

surfaces.

As for implicit solids, Savchenko et al. [34] introduced a

novel approach for the reconstruction of geometric models

from given point sets using volume splines. Raviv and Elber

[32] presented an interactive sculpting technique that uses

the zero level-set of the scalar, tensor-product, uniform

trivariate B-spline functions to represent 3D objects. The

trivariate functions have a control volume that consists of

scalar control coefficients. Users can indirectly sculpt the

object by modifying relevant scalar control coefficients of

the trivariate B-spline functions in different levels of details.

Hua and Qin [23,24] developed interactive solid sculpting

toolkits with haptics on implicit B-spline solids defined

through the use of B-spline control coefficients over the

intensity field. However, the control of B-spline coefficients

is less intuitive to ordinary users in general.

Implicit functions can also be used for shape reconstruc-

tion and 3D morphing process. Turk and O’Brien [40] used

variational implicit functions to achieve shape morphing

and surface reconstruction. They employed the radial basis

function (RBF) method to construct an implicit function,

which interpolates the given dataset and minimizes the thin-

plate energy. Yet since the RBF method is a global

variational interpolating approach, any changes in the

dataset will cause recalculation of the entire system. It’s

time-consuming for direct manipulation and not applicable

for local sculpting of complex implicit models. Ohtake et al.

[29] presented a multi-level partition of unity implicit

surface supporting local features, but it is sensitive to the

quality of input data.

Level-set method is another popular technique to model

implicit objects. Zhao et al. [47] proposed a weighted

minimal surface model based on variational formulations

and PDE techniques to construct a surface from scattered

data. They used the level-set method as a numerical

technique to evolve the implicit surface continuously

following the gradient descent of the energy functional for

the final reconstruction. Their level-set model is governed

by a time evolution PDE with velocity at the level-sets given

by the motion equation of the original surface. The level-set

method is based on a continuous formulation using PDEs

and deforms an implicit surface according to various

equations of motion depending on geometry, external

forces, or certain energy minimization. It can easily handle

topological changes and reduce noises in the dataset. The

level-set method mainly focuses on implicit objects

reconstructed from scattered datasets. Problems for inter-

polating curve sketches, especially open curve sketches

have not been addressed. The shape deformation using the

level-set method is often obtained by manipulating the

speed functions in the level-set formulation [1,28], which is

non-intuitive for general users.

Despite the modeling advantages of implicit functions,

there are still difficulties for intuitive design and direct

manipulation of implicit surfaces and solids in general. We

integrate the implicit functions with the parametric PDE to

offer users modeling advantages of both types of techniques.

Instead of time evolution PDEs used in the level-set method,

we employ static elliptic PDEs for boundary value

problems. In particular, we introduce a novel technique

which defines volumetric implicit objects as solutions of the

elliptic PDEs of scalar intensity fields under generalized

boundary constraints, including sketch curves, scattered

data points, as well as volumetric datasets. The constraints

may be associated by different intensity values, which offers

more degrees of freedom than previous implicit techniques.

Our implicit PDE model can be used for geometric shape

design, object reconstruction, damaged data recovery, and

shape blending. Implicit PDE objects can be manipulated by

modifying the initial constraints or directly changing

intensity values in the interior of the volumetric space.

The implicit PDE method recovers not only the target

object, but also the entire working space by the given

information. Our system does not require the constraints to

be closed datasets, which provides modeling potentials for

open surfaces. To visualize implicit objects of scalar

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–1116 1103

118

intensity field, we can either use the Marching Cube method

[25] which calculates the triangulated iso-surface at a

selected intensity value on discretized sampling grids, or

output the volumetric data in the working space to other

volume rendering systems such as Pov-Ray or Vol-Vis

systems.

3. Formulating implicit PDEs

3.1. Implicit elliptic PDE formulation

The implicit PDEs employed in this paper are founded

upon the parametric PDE solid models [16]. In order to take

advantage of the interactive feature associated with the

parametric PDE modeling techniques, we use elliptic PDEs

to define scalar intensity field for modeling implicit objects.

Because higher-order PDEs can provide higher-order

continuity for the scalar intensity value distribution, we

employ a fourth-order elliptic PDE to model the scalar field

for smooth results with tangential continuity, especially

when dealing with shape blending and damage data

recovery in which most of information are specified as

constraints.

In particular, we formulate the unknown function as the

intensity field function dðx; y; zÞ defined in the 3D physical

space of x; y; and z: The corresponding implicit PDE is

formulated as follows:

a2 ›2

›x2
þ b2 ›2

›y2
þ c2 ›2

›z2

 !2

dðx; y; zÞ ¼ 0; ð1Þ

where x; y; and z are coordinate variables of 3D physical

space varying from 0 to 1, respectively, which form a unit

cube as the working space; a; b; and c are arbitrary blending

coefficient functions of x; y; z defining material properties of

the implicit space, which are initially defined as constants

throughout the entire working space. The blending coeffi-

cient functions control the relative intensity blending and

the level of variable dependence among x; y; and z

directions. For example, according to Eq. (1), if a is given

as a large value for all sampling points in the working space,

then the contributions of dðx; y; zÞ along x direction will be

relatively small in comparison with the other two directions.

Hence, the coefficient functions will affect the solution of

Eq. (1).

Because the numerical techniques used in this paper to

solve the fourth-order elliptic PDE are suitable for other

boundary value PDEs, we also incorporate a second-order

PDE into our system:

a2 ›2

›x2
þ b2 ›2

›y2
þ c2 ›2

›z2

 !
dðx; y; zÞ ¼ 0; ð2Þ

which is less time-consuming to solve with less continuous

intensity distribution and can be used for initial guess of

intensity values of the objects.

Because aðx; y; zÞ; bðx; y; zÞ; and cðx; y; zÞ are allowed to

vary across dðx; y; zÞ; i.e. different locations in the physical

domain may have different smoothing coefficient values,

local control on implicit PDE objects can be easily

achieved.

To obtain direct and local manipulations on the implicit

PDE objects, we solve Eqs. (1) and (2) using numerical

methods based on finite-difference approximations of the

PDEs, which require at least six boundary conditions at

x ¼ 0; x ¼ 1; y ¼ 0; y ¼ 1; z ¼ 0; z ¼ 1 defining the inten-

sity values at three boundary surface pairs of the 3D

working space in order to derive a unique solution.

However, in most applications, there are no such boundary

conditions available for modeling implicit objects,

especially in the case of using implicit functions for shape

reconstruction, where the constraints are usually defined by

certain contouring sketch curves or scattered points

assigned with specified intensity values inside the 3D

working space. In such cases, the intensity distributions on

the boundaries are unknown. Thus, such problems cannot be

solved by traditional finite-difference methods directly.

However, we may approximate the intensity distribution for

this type of problems as follows. First, we find an initial

guess of the volumetric working space using certain

techniques. Second, we use the guessed boundary values

as boundary conditions, and enforce additional constraints

according to the original data. Third, we perform iterative

finite-difference techniques to get an approximated solution

for the entire working space based on these constraints.

After that, direct manipulations and local sculpting inside

the working space can be enforced by adding additional

constraints to the PDEs. Variational interpolating

approaches are good candidates for shape reconstruction

from scattered points, such as the RBF method [26,40]

which creates a 3D implicit function to give an approxi-

mation interpolating the given constraints by minimizing

certain energy functionals. We employ the RBF method to

compute the initial guess of the implicit PDE objects defined

by sketch curves. We can also calculate the intensity values

on sampling grids using their distance to the constraints,

because the implicit objects can be defined by distance

functions. The algorithm we use to compute the distance

field is the fast-tagging approach proposed by Zhao et al.

[46]. Note that, because our goal is to obtain an initial guess

of the working space according to constraints, there are

other techniques which can provide satisfactory results.

3.2. Radial basis function

RBF is commonly used for scattered data interpolation,

which is to generate a smooth surface that passes through a

given set of scattered points. Scattered data interpolation

sometimes can also be addressed using variational analysis

where the desired solution is a function, f ð~xÞ; which

minimizes certain energy functionals. In principle, the

energy functional measures the quality of interpolation

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–11161104

119

subject to the interpolatory constraints f ð~ciÞ ¼ hi: It can be

solved by a weighted sum of certain RBFs (note that, we use

fð~xÞ ¼ l~xl3 in this paper). Then the interpolation function

can be formulated as:

f ð~xÞ ¼
Xn

i¼1

wifð~x 2 ~ciÞ þ Pð~xÞ; ð3Þ

where ~ci’s are coordinate vectors of the constraints, wi’s are

weights, and Pð~xÞ is a polynomial only consisting of the linear

and constant portions of f : According to the properties of the

appropriate RBFs, the interpolation function minimizes the

thin-plate energy while satisfying the data interpolation

requirement. By applying the constraints to Eq. (3), we can

obtain a linear equation system whose unknowns are the

weights and coefficients of the polynomial P:This system can

be solved using standard solvers of linear equations.

However, the RBF method requires gradient information

of the datasets, and time and space complexity of the

equation system depends on the number of constraints, so it

is not suitable for reconstruction and interactive sculpting of

large scattered datasets with arbitrary constraints. Because

our goal here is to simply make an initial guess for our

implicit PDE shape, distance approximation techniques

such as fast-tagging algorithm which computes the signed

distance field of the working space according the constraints

can give satisfactory results for such input.

3.3. Numerical simulation

In order to easily enforce additional constraints for direct

manipulations of implicit objects, we resort to numerical

techniques based on the finite-difference approximation and

iterative methods for linear equations to solve the implicit

PDEs with predefined boundary values or approximated

initial guess from sketch curves/scattered points. The

iterative methods will arrive at an approximated solution

with user-specified error tolerances. Numerical algorithms

also facilitate the material modeling of anisotropic distri-

bution. A multi-grid-like iterative solver is used to improve

the system performance.

The finite-difference method divides the working space

into discrete grids along x; y; z directions and transforms a

continuous PDE into a set of simultaneous algebraic

equations by sampling the partial derivatives in the equation

for each grid point with their finite-difference approxi-

mations. The algebraic equation system can be solved

numerically either through a direct procedure or an

iterative process for an approximated solution of the

continuous PDE.

Based on Taylor’s expansion, the derivatives of a

univariate function can be approximated using the central-

difference scheme f 0ðxÞ ¼ ðf ðx þ hÞ2 f ðx 2 hÞ=2h; f 00ðxÞ ¼

½f ðx þ hÞ2 2f ðxÞ þ f ðx 2 hÞ�=h2;where h denotes the spatial

interval along x direction. This can be generalized to all

partial derivatives on trivariate implicit geometry,

by dividing x; y; z domain into l;m; and n

discretized grids, respectively. We represent the function

dðx; y; zÞ by its values at the discrete set of

points (xi ¼ iDx; yj ¼ jDy; zk ¼ kDz), i ¼ 0; 1;…; l 2 1; j ¼

0; 1;…;m 2 1; and k ¼ 0; 1;…; n 2 1:Dx;Dy;Dz are the grid

spacing along x; y; z directions. We write di;j;k for dðxi; yj; zkÞ

and {i; j; k} for grid point ðxi; yj; zkÞ for sake of

simplicity (Fig. 1). We use finite-difference representations

of second-order and fourth-order partial derivatives

ð›2di;j;kÞ=ð›x2Þ; ð›4di;j;kÞ=ð›x4Þ; and ð›4di;j;kÞ=ð›x2›y2Þ at

{i; j; k} as examples:

›2di;j;k

›x2
¼

di21;j;kþdiþ1;j;k22di;j;k

ðDxÞ2
;

›4di;j;k

›x4
¼

di22;j;kþdiþ2;j;k24di21;j;k24diþ1;j;kþ6di;j;k

ðDxÞ4
;

›4di;j;k

›x2›y2
¼

di21;j21;kþdi21;jþ1;kþdiþ1;j21;kþdiþ1;jþ1;k

ðDxÞ2ðDyÞ2

þ
22di21;j;k22diþ1;j;k22di;j21;k22di;jþ1;kþ4di;j;k

ðDxÞ2ðDyÞ2
:

Other partial derivatives along y and z directions can be

computed similarly.

Substituting partial derivatives by finite-difference rep-

resentations at grid points, Eq. (1) can be rewritten as:

AD ¼ b; ð4Þ

where A represents the discretized differential operator in

ðl £ m £ nÞ £ ðl £ m £ nÞ matrix form, and each row in A

consists of coefficients of the difference equation for the

corresponding grid point. A is also controlled by the blending

functions aðx; y; zÞ; bðx; y; zÞ; and cðx; y; zÞ: D collects the

unknown intensity values at the grid points, and b is defined

by the value of constraints:

A ¼ ½Að0;0;0Þ;Að0;0;1Þ;…;Aðl21;m21;n21Þ�
T
;

Aði;j;kÞ ¼ ½Aði;j;kÞ;ð0;0;0Þ;…;Aði;j;kÞ;ðl21;m21;n21Þ�;

D ¼ ½dð0;0;0Þ; dð0;0;1Þ;…; dðl21;m21;n21Þ�
T
;

b ¼ ½bð0;0;0Þ; bð0;0;1Þ;…; bðl21;m21;n21Þ�
T
:

Fig. 1. The point discretization of an implicit function.

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–1116 1105

120

A and b are defined as follows: given a grid point {i; j; k}; let

its index d ¼ i £ l £ m þ j £ m þ k be represented as ði; j; kÞ:

If it is a constraint point, all elements in Aði;j;kÞ have value 0

except Aði;j;kÞ;ði;j;kÞ ¼ 1; and bði;j;kÞ is set to be the intensity

value defined by the constraint. If it is free, the value of

Aði;j;kÞ;ði0;j0;k0Þ depends on contribution of {i0; j0; k0} in the

difference equation at {i; j; k}; and bði;j;kÞ ¼ 0: Fig. 1 shows

the grid points contributing for {i; j; k} in the dth row of A; i.e.

Aði;j;kÞ: All the values of Aði;j;kÞ;ði0;j0;k0Þ are set to be 0 except:

Aði;j;kÞ;ði;j;kÞ ¼ 6
a4

i;j;k

Dx4
þ

b4
i;j;k

Dy4
þ

c4
i;j;k

Dz4

 !

þ 8
a2

i;j;kb2
i;j;k

Dx2Dy2
þ

a2
i;j;kc2

i;j;k

Dx2Dz2
þ

b2
i;j;kc2

i;j;k

Dy2Dz2

 !
;

Aði;j;kÞ;ði^1;j;kÞ ¼ 24
a4

i;j;k

Dx4
þ

a2
i;j;kb2

i;j;k

Dx2Dy2
þ

a2
i;j;kc2

i;j;k

Dx2Dz2

 !
;

Aði;j;kÞ;ði;j^1;kÞ ¼ 24
b4

i;j;k

Dy4
þ

a2
i;j;kb2

i;j;k

Dx2Dy2
þ

b2
i;j;kc2

i;j;k

Dy2Dz2

 !
;

Aði;j;kÞ;ði;j;k^1Þ ¼ 24
c4

i;j;k

Dz4
þ

a2
i;j;kc2

i;j;k

Dx2Dz2
þ

b2
i;j;kc2

i;j;k

Dy2Dz2

 !
;

Aði;j;kÞ;ði^2;j;kÞ ¼
a4

i;j;k

Dx4
;

Aði;j;kÞ;ði;j^2;kÞ ¼
b4

i;j;k

Dy4
;

Aði;j;kÞ;ði;j;k^2Þ ¼
c4

i;j;k

Dz4
;

Aði;j;kÞ;ði^1;j^1;kÞ ¼
2a2

i;j;kb2
i;j;k

Dx2Dy2
;

Aði;j;kÞ;ði^1;j;k^1Þ ¼
2a2

i;j;kc2
i;j;k

Dx2Dz2
;

Aði;j;kÞ;ði;j^1;k^1Þ ¼
2b2

i;j;kc2
i;j;k

Dy2Dz2
:

The matrix A is called ‘tridiagonal with fringes’ [31].

Similarly, using finite-difference techniques, Eq. (2) can

be rewritten as:

A0D ¼ b0
; ð5Þ

Our implicit PDE is open along all of x; y; and z directions,

so forward/backward difference approximations shall be

utilized when computing partial derivatives near the six

boundaries instead. Arbitrary boundary and additional

constraints can be easily enforced by the finite-difference

method. In our system, after making the initial guess of

the intensity values, we fix the intensity values at

boundaries, so that the manipulations on the implicit

objects can be performed using the finite-difference

iterative solver. In general, this type of elliptic PDEs

allows designers to choose (various) constraints based on

diverse design tasks.

3.4. Constrained system

One attractive advantage of the PDE modeling

techniques is that the interior of the objects is controlled

by PDEs without the need of extra specification for

interior material distribution. More importantly, users can

modify an implicit PDE object by enforcing additional

hard constraints of desired intensity values anywhere

inside the working space without violating previously

defined conditions. Additional hard constraints inside the

working space introduce a set of new equations into the

system to replace the corresponding original

difference equations. For example, if we want to set

the intensity value di;j;k as a particular constant value d0;

the equation di;j;k ¼ d0 will be used to replace the

discretized difference equation approximating the PDE at

the point {i; j; k; }; i.e. Aði;j;kÞði;j;kÞ ¼ 1; all other

Aði;j;kÞði0;j0;k0Þ ¼ 0; and bði;j;kÞ ¼ d0: After replacing all the

equations according to the constraints, Eq. (4) becomes

AcD ¼ bc; ð6Þ

where Ac and bc are obtained by replacing kðk . 0Þ

equations in the original system with those derived from

additional k constraints at the corresponding coordinate

positions. The constrained system for the second-order

Eq. (5) has the similar form:

A0
cD ¼ b0

c; ð7Þ

3.5. Iterative method

With boundary conditions, we solve the linear

Eqs. (4)–(7) using finite-difference-based iterative tech-

niques. These methods make immediate use of the sparse

matrix structure on the left-hand side of the equations.

Using the matrix A in Eq. (4) as an example, A is split into

two parts

A ¼ Ad 2 Ar; ð8Þ

where Ad consists of the diagonal elements of A and zeros

elsewhere, and Ar is the remainder. Then Eq. (4) becomes

AdD ¼ ArD þ b: ð9Þ

The iterative methods start from choosing an initial guess

Dð0Þ and then solving successively by iterating DðsÞ from

AdDðsÞ ¼ ArD
ðs21Þ þ b: ð10Þ

The same idea can be applied to Eqs. (5)–(7).

In the case of predefined boundary conditions, we

compute the initial guess using simple linear interpolations

based on the constraints. The iteration will stop at DðsÞ for an

approximated solution when the difference between DðsÞ and

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–11161106

121

Dðs21Þ is less than a threshold (we use 1029 in this paper).

Certain variants of iterative techniques exist for solving the

aforementioned linear equations [38]. In this paper, we

employ the Gauss-Seidel iteration, which uses the updated

value of the iteration result at a grid point on the right-hand

side of Eq. (10) as soon as it becomes available. To further

speed up the converging rate of Gauss-Seidel iteration, we

take into account the error factor, which is characterized by

the difference between the approximation and the real

solution. This leads to the method of successive over-

relaxation iteration, or SOR iteration. Nonetheless, the

discretization of volumetric implicit PDE space results in a

very large number of linear equations. This causes the slow

convergence of iterative methods. To achieve a solution

faster, we start solving the equations at a coarse grid with

down-sampled constraints and interpolate the solution at

finer grids to compute the initial guess for the iterative

methods at the finer resolution. The convergent rate of the

iterative solvers can be greatly increased.

4. Boundary conditions for different applications

To construct an implicit PDE object, first we need to

outline the rough shape of the object, which can be defined

through boundary conditions or special constraints such as

curve contours and scattered data points in the working

space that the object interpolates. The form of boundary

constraints varies for different applications. Our implicit

PDE techniques accept boundary conditions for applications

such as shape blending, object recovery, and shape

reconstruction from sketch curves and scattered data points.

Fig. 2 illustrates different types of boundary conditions in

simplified 2D cases.

4.1. Shape design using traditional boundary constraints

The implicit PDE techniques can model geometric

shapes by computing the information of the whole working

space based on traditional boundary constraints with

optional cross-sectional details inside the working space.

Such boundary conditions are defined as intensity values

sampled at certain resolution from input or use some

analytic functions to generate implicit boundary functions

dð0; y; zÞ; dð1; y; zÞ; dðx; 0; zÞ; dðx; 1; zÞ; dðx; y; 0Þ; dðx; y; 1Þ

and a collection of cross-sectional scalar intensity functions

dðxi; y; zÞ; dðx; yj; zÞ; or dðx; y; zkÞ; where xi; yj; zk [ð0; 1Þ are

constants. These functions are sampled at specified

resolution to provide a set of intensity values inside the

working space. Using these values as generalized boundary

conditions, we introduce certain number of new equations

and the linear equation system has the form of Eqs. (6) or (7)

which can be solved using above mentioned techniques.

Fig. 3 shows examples of the fourth-order and second-order

PDEs, respectively. Although Eq. (6) takes more time to

solve, it provides higher-order continuity of intensity

Fig. 2. 2D illustrations of different types of boundary conditions. (a) Traditional boundary constraints; (b) boundary conditions for shape blending; (c) sketch-

curve constraints; (d) scattered-point constraints.

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–1116 1107

122

distributions in the working space in comparison with the

results from Eq. (7).

4.2. Shape blending

Our PDE formulations define the interior information of

implicit objects via differential properties, which means that

it is possible to automatically recover the missing

information from partial data using our prototype system

and guarantee intensity continuity of non-constrained parts

of the working space. This feature can be applied to shape

blending process by placing the objects to be blended into

the working space and the system will compute the

connecting parts between those objects. Such kind of

datasets form another type of initialization with pre-defined

boundary constraints, which gives most of the information

with only a small portion of the working space missing. The

missing information of the working space can be approxi-

mated based on the remaining part using our PDE

formulations. An example of shape blending is shown in

Fig. 4 including blended results using different order PDEs,

where the fourth-order blended shape is smoother than the

second-order result. The above two types of boundary

conditions allow our system to model volumetric datasets.

4.3. Shape reconstruction from sketch curves

To maximize the modeling potential of implicit PDEs,

we develop a set of toolkits using PDE techniques to

reconstruct objects from spatial sketch curves of specified

intensity values. Because with this type of constraints, the

boundary information around the working space is missing,

it is extremely difficult to directly solve the implicit PDE

under such constraints. Therefore, we employ techniques

such as the RBF method for the interpolation problems to

obtain an initial guess for the implicit PDE shapes subject

to sketch curve constraints. We then use the iterative solver

to get a smooth solution. When performing the RBF

method, the gradient information indicating the change of

the intensity values around the constraints will be needed to

define the inside and the outside of the reconstructed shape.

If the gradient information is not provided by users, our

system calculates the gradient at each sample point of the

constraints according to the normal of the local tangent

plane of the curve at that point, as explained in Fig. 5. Our

system also allows designers to interactively input certain

sketch curves such as B-spline curves with specified

intensity values, which permits the initial sketch curves

being modified directly. Note that, the sketch curves are not

required to be planar curves. Moreover, they can even be

open curves, which may result in open iso-surfaces instead

of solid objects. Fig. 6 shows examples obtained from

sketch curves.

When modeling more complex shapes from sketches,

usually there are a large number of sketch curves to be

enforced, which will increase the number of calculations

dramatically. Moreover, sometimes the sketch curves are

only designed to model the local area they resides, so their

global contribution are not desirable. To address such

issues, our system allows users to compute the initial guess

of implicit PDE objects using the RBF method for selected

subset of sketch curves at any local region of the working

domain without disturbing the outside areas. At the

initialization stage, when using RBF method to compute

the initial guess of the implicit shape, users are prompted to

select interested curves, define the region in the working

Fig. 3. Examples of implicit PDE objects generated from cross-sectional boundary conditions. (a) Original object rendered by POV-RAY; (b) cross-sectional

boundary conditions by removing several data slices along the y-direction from the original data; (c) and (d) are recovered fourth-order implicit PDE objects

from (b) by solving Eq. (1) with b ¼ 1:2 and 4:8; respectively; (e) and (f) are corresponding second-order objects. The fourth-order PDE provides more

continuous results.

Fig. 4. Shape blending using implicit PDEs. (a) Original dataset shown in iso-surface; (b) blended object from (a) using the fourth-order PDE; (c) blended

object using the second-order PDE; (d)–(f) are cross-section views of the working space for (a)–(c), respectively, where darkness increases with intensity.

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–11161108

123

space to reconstruct the subset of the object, as well as to

indicate if curves that only part of them inside the specified

area can make contribution to the reconstruction. After all

the sampled intensity values in each of the sub-regions of

the working space are computed, our system can perform a

global blending process to put sub-regions together. This

feature can reduce the number of calculations of the RBF

method, and provide fast reconstruction by sculpting sketch

curves. Moreover, CSG sculpting tools can be easily

enforced accordingly. Fig. 7 shows an example.

4.4. Shape reconstruction from unorganized scattered

data points

Implicit functions are commonly used for shape

reconstruction from scattered data points. In this paper,

our implicit PDE model not only reconstructs objects

from unorganized scattered data sets, but also recovers

information of the entire working space where objects

reside, with which direct manipulations of objects can be

easily applied. Similar to the sketch curve constraints,

intensity values at boundaries of the working space are

unknown. However, for scattered points datasets where the

number of constraints is extremely large and there is no

gradient information available, RBF method is not suitable

for computing the initial guess. In such case, we use the

signed distance field approximation based on the con-

straints. The initial intensity value on the sampling grids are

computed by the fast-tagging algorithm introduced by Zhao

et al. [46] based on their signed distance to the data point

constraints and we then use iterative solvers to conduct a

smoothing task. Two examples are shown in Fig. 8.

5. Sculpting and manipulation toolkits for implicit PDEs

Our system provides a set of toolkits for global

deformation and local editing of the implicit objects. Fig. 9

shows a snapshot of our prototype system while manipulat-

ing a selected sketch curve.

5.1. Modifying blending coefficients

The coefficient functions aðx; y; zÞ; bðx; y; zÞ; and

cðx; y; zÞ can influence the solution of the implicit

PDEs. They control the relative intensity blending and

the level of variable dependence among x, y, and z

directions, thus they can be treated as generalized

material properties over the volumetric working space.

Consequently, users can control how the boundary and

additional conditions influence the interior intensity

distribution by modifying the length scale at arbitrary

locations (i.e. ai;j;k; bi;j;k; and ci;j;k). In general, users can

Fig. 5. Illustration of computing the gradient direction. p1; p2; and p3 are

neighboring points on a discretized curve; ~n is the normal of their local

plane; and ~g is the gradient vector for p2:

Fig. 6. Examples of shape reconstruction from sketch curves. (a) is a set of open curves without specified gradient information; (b) and (c) are iso-surfaces at

different iso-values, respectively; (d) is a cross-section view of the implicit shape; (e)–(g) show an example of generating implicit shapes by incrementally

defining a set of B-spline curves; (e) is an object defined by two curves; (f) is the refined object by adding two additional sketch curves; (g) is the shape

reconstructed from six B-spline sketch curves; and (h) is a cross-section view.

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–1116 1109

124

define the control functions aðx; y; zÞ; bðx; y; zÞ; and

cðx; y; zÞ interactively over the specified grid point

{i; j; k}: Our system allows users to modify them locally

to deform the shape. Fig. 3 has examples of implicit

PDE objects subject to different coefficient values.

5.2. Sketch curve sculpting

Implicit objects can be defined by specifying a set of

sketch curves which outline the rough shape of the objects.

Our implicit PDE model provides interactive shape design

toolkits to allow users to manipulate the sketch curves in

order to deform the underlying reconstructed implicit

object. The sketch curves defining the rough shape of the

object can be obtained by either predefined curve network or

B-spline curves from users’ direct input. Our system allows

users to modify the geometric shape, intensity value, as well

as gradient directions of the sketch curves interactively in

order to get the desired object.

In order to modify the sketch curves smoothly, B-spline

approximations for those curves are calculated at the

initialization stage, then users can sculpt the curves

interactively by manipulating the B-spline control points

via sculpting, translation, and rotation. Because the

reconstructed implicit object is required to interpolate

those sketch curves, which define its outlining shape

approximately, it will follow the shape changes accordingly.

Fig. 11 has an example of sculpting the shape of a selected

sketch curve. The intensity values of sketch curves decide

where the final shape of the implicit objects should pass

through at the level-set of its value. By modifying the

intensity values of selected curves, users can manipulate the

objects accordingly. Furthermore, according to the gradient

definition, the intensity values increase along gradient

directions of sketch curves and decrease in the opposite

directions in general. Gradient directions provide

information of the intensity distributions starting at the

sketch curves and propagating to the neighborhood, which

Fig. 7. Example for performing the RBF initialization locally. (a) Two set of sketch curves; (b) and (c) are reconstructed implicit shapes rendered at different

iso-values; (d) a cross-section view.

Fig. 8. Examples of shape reconstruction from scattered data points (b) and (c) are iso-surface at different intensity values of the object reconstructed from point

set (a); (f) and (g) represent the reconstructed shape from dataset (e) at different iso-values; (d) and (h) are cross-section views.

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–11161110

125

defines the inside and outside of the object. Without the

predefinition of gradient directions, the solution will be

trivial. Therefore, gradient information of sketch curves is

required for reconstructing a unique shape. Accordingly,

changing the gradient directions at selected sketch curves

means modifying directions of intensity changes in the

implicit working space and will result in different implicit

shapes. Our system allows users to specify the gradient

direction of each individual sketch curve to construct

different implicit PDE objects. Refer to Fig. 10 for examples

of specifying and modifying gradient directions of the

sketch curves. Without further specification, other examples

in this paper have gradient directions pointing inward the

curves by default.

5.3. Local manipulation of implicit PDE solids

Usually the sketch curve sculpting will deform the

entire reconstructed shape, which only offers global

manipulation and is less intuitive for ordinary users to

handle. Even with the specification of local areas of

interests containing the sculpted sketch curve,

the sculpting will affect all the points in the selected

regions. Moreover, sometimes the input constraints alone

cannot guarantee a satisfactory solution of constructed

shape. Therefore, direct modification in selected areas is

desirable, especially when the overall recovered shape is

satisfactory but minor changes in small localized areas

are needed. Our system provides interactive tools for the

intensity value modification in selected regions to sculpt

the reconstructed shape. The modification will be

enforced into Eqs. (6) or (7). Using the aforementioned

techniques, we can solve Eqs. (6) and (7) to obtain the

modified objects. Because for local manipulations, we

only calculate the intensity updates in the neighborhood

of selected regions, where the intensity values are

governed through the PDE and the selected regions

usually have relatively small number of grids comparing

Fig. 9. Snapshot of the interface of our implicit PDE system.

Fig. 10. Examples for specifying and changing gradient directions of sketch curves. (a) and (c) are two sets of curves with same geometric shape but different

gradient directions, where the arrows show intensity increasing directions; (b) and (d) are corresponding implicit objects.

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–1116 1111

126

with the entire working space, the update of the new

intensity values for such regions will be quickly obtained

through our finite-difference solver. Therefore, we can

achieve interactive manipulations for local sculpting of

implicit PDE objects.

Traditional implicit techniques for data reconstruction

do not support direct manipulations on the arbitrary

locations in the volumetric working space. The changes

on the predefined constraints will cause global defor-

mation. It is more desirable to offer users editing

functionalities on the interior properties with interactive

interface.

5.3.1. Local intensity modification

Besides the local RBF approximation for local sketch

curve sculpting, our system also allows users to specify any

interior region of the sampling grids, and applies intensity

changes only within the specified region. Alternatively, we

can freeze the selected region and disallow any changes in

the specified region. In our system, this can be done through

interactively specifying the maximum and minimum

sampling grid in x; y; and z direction of the desired region

in the sampling volumetric working space. Subsequently,

any change within the region will have no influence on

sampling points outside the region. The localized defor-

mation can be easily achieved because only those equations

corresponding to the points of the specified regions in Eq. (6)

will be solved. In addition, the number of computations is

reduced due to fewer number of equations involved in the

local sculpting. In principle, all hard constraints can be

viewed as some sort of local deformation. Fig. 11 shows

examples of local deformation.

5.3.2. Iso-surface sculpting

Users can also specify an iso-surface at a particular

intensity value and use a cutting plane inside the volumetric

working space to get a 2D iso-contour on the plane, then

stretch, push, rotate the contour, as well as add desired

intensity values at specified locations to modify the shape of

the iso-surface and the intensity distribution of the interested

areas. Refer to Fig. 11 for illustrative examples.

5.3.3. CSG operations

We also offer several CSG sculpting tools such as using

spheres and cubes to trim/extrude/sculpt implicit objects by

adding more constraints on the sampling grids of the

working space. This is extremely useful for such situations

when there are some minor changes needed to be done in

some local small regions. Such sculpting tools make our

system compatible with CSG-based implicit models by

treating those models as modeling tools. Examples are

shown in Fig. 11.

5.3.4. Gradient constraints

The intensity gradient 7 at a point ðx; y; zÞ in the intensity

field can be defined as

7dðx; y; zÞ ¼
›dðx; y; zÞ

›x
;
›dðx; y; zÞ

›y
;
›dðx; y; zÞ

›z

� �
:

By applying the finite-difference techniques, the gradient

vector 7di;j;k at a discretized grid point {i; j; k} can be

approximated as:

diþ1;j;k 2 di21;j;k

2Dx
;

di;jþ1;k 2 di;j21;k

2Dy
;

di;j;kþ1 2 di;j;k21

2Dz

� �
:

It provides information about intensity changes in the

neighborhood of ðx; y; zÞ in the working space. Therefore,

changing the direction and length of the gradient vector of a

selected grid point will affect the intensity distribution in its

neighborhood, and as a result, deform the object. Our

system allows users to pick a point inside the working space,

specify the local region surrounding the point, and modify

its gradient vector interactively, then the shape bounded by

the specified local region will be deformed accordingly

(refer to Figs. 12 and 13(a)).

5.3.5. Curvature constraints

The mean curvature at point ðx; y; zÞ in the intensity field

can be computed from the divergence of the intensity

Fig. 11. Examples of enforcing curve and direct manipulation constraints. (a) Original object with sketch curves; (b) deformed object by sculpting a selected

curve; (c) changing an iso-contour; (d) deformed object subject to local region constraints; (e) adding a sphere in the working space; and (f) is the

corresponding deformed object subject to (e); (g) adding constraints for an object with sharp edges; (h) and (i) are two trimming examples.

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–11161112

127

gradient of ðx; y; zÞ; i.e. 7·7dðx; y; zÞ [33]. In the discretized

form, it can be approximated as 7·7di;j;k: Its definition is

also related to the intensity value of the point’s neighbors.

By changing the curvature value at a point, the shape of

the object will be changed. Our system allows users to

manipulate the curvature at a selected grid point for implicit

shape deformation. Fig. 13 shows examples.

6. Implementation and discussion

We develop a prototype software system that permits

users to reconstruct geometric shapes defined by PDE-based

implicit functions from a set of sketch curves, scattered data

points, or volumetric datasets. Our system also allows

interactive manipulation of reconstructed implicit PDE

objects with various intensity constraints in the volumetric

working space. The interactive sculpting of implicit PDE

objects can be obtained via modification of predefined

conditions and interior operations. The system is written in

Visual Cþþ and runs on Windows95/98/NT/2000/XP.

Fig. 14 illustrates the architecture of our modeling

environment for implicit PDE objects. In particular, our

system provides the following functionalities:

Missing information recovery and shape blending. The

underlying implicit PDEs of our system provide a simple yet

systematic mechanism to obtain the volumetric information

satisfying specified constraints automatically. Such an

advantage makes it possible to recover missing information

of input datasets with our system. It can also be used to

compute connecting parts between different objects in the

working space which leads to shape blending.

Shape reconstruction. Users can interactively input and

edit scattered data points or sketch curves with specified

intensity values, then the system uses the RBF method or

distance field approximation to calculate intensity values on

the sampling grids within the volumetric working space as

initial guesses for the iterative solver of the discretized

implicit PDE to obtain approximated solutions for implicit

PDE objects satisfying these conditions. Our system can

model both close and open implicit shapes.

Discrete models. Our system supports implicit PDE

objects obtained from solving the fourth-order and second-

order elliptic PDEs using: (1) finite-difference discretization

for the numerical solution of the elliptic PDEs in 3D

working space; and (2) RBF approximation at arbitrary sub-

regions in the working space for modeling localized details

and performance speedup.

Interactive and direct operations. Users can also work

directly on implicit PDE objects through: (1) local

modification of blending coefficient functions; (2) sketch

curve sculpting using B-spline manipulation; (3) gradient

specification of selected curves; (4) local RBF approxi-

mation for improved time performance and interactive CSG

manipulation; (5) interior deformation with additional

constraints inside the working space; (6) iso-surface

manipulation and direct manipulation of iso-contours at

selected intensity values; and (7) gradient and curvature

constraints inside the working space.

We employ iterative methods (e.g. Gauss-Seidel

iteration) with multi-grid-like techniques to solve the

implicit PDEs subject to various constraints. Besides

original datasets or predefined sketch curves, our system

allows users to interactively define and sculpt sketch

Fig. 12. Examples of enforcing gradient constraints. (a) Original object with the gradient vector at a selected point; (b) and (c) are deformed objects by

changing the gradient at the point.

Fig. 13. Examples of enforcing gradient and curvature constraints. (a) Deformed object by changing gradient; (b) and (c) are deformed objects by changing

curvature at a selected point (shown in green) from (a).

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–1116 1113

128

curves directly and specify gradients at selected curves.

These constraints provide more freedom to designers and

make intuitive design of implicit objects more cost-effective.

We also enforce additional constraints directly inside the

volumetric working space, apply local operations, and

provide sculpting toolkits for the implicit objects, which

facilitate the construction of implicit PDE objects of arbitrary

topology. The PDE is solved by finite-difference techniques

because they are simple, easy to implement, and suitable for

complicated, flexible constraints. In general, the time and

space complexity are increased with higher resolution as well

as increased accuracy. Examples in this paper are rendered by

POV-RAY.

Table 1 summarizes the numbers of constraints and

CPU time of numerical solvers for the second-order and

fourth-order implicit PDE examples when running on

a Pentium 4.1.4 GHz PC. The resolution of the working

space is 64 £ 64 £ 64 for Fig. 3 and 65 £ 65 £ 65 for other

examples. The stopping threshold (difference between two

iteration steps) is 1029. ‘Initial’ stands for the initial guess

where we use RBF method for sketch curve datasets and

fast-tagging approximation for the scattered data points

input. ‘2nd(s)’ and ‘4th(s)’ indicate the CPU time in

seconds for solving the entire implicit second-order and

fourth-order PDE working spaces based on the initial guess

using multi-grid Gauss-Seidel iteration. The time perform-

ance of RBF and fast-tagging algorithms depends on the

number of enforced constraints, while the convergent

speeds of iterative methods are mainly determined by

the sampling rates of the implicit working space.

Although the initialization of the implicit models are

time-consuming because of the approximation of the

entire working space, the local sculpting afterward will

be interactive because only small number of sampling

grids are involved. Table 2 summarizes the CPU time for

the examples of our direct sculpting in local selected

regions. ‘Cons’ stands for the number of constraints

involved for the operation, ‘Grids’ represents the number

of grid points in the selected region, and ‘4th(s)’ gives

the CPU time (seconds) for updating the intensity values

in the selected area using the fourth-order PDE. The

CPU time depends on the scale of the intensity change

by the sculpting operation as well as the number of

constraints and the size of the selected region. For

instance, CSG operations usually enforce relatively larger

intensity changes for constraints in selected regions than

other operations such as gradient and curvature sculpting,

hence they need more CPU time to update the region’s

intensity values.

Despite the direct and powerful modeling advantages

of our PDE framework, the major difficulty associated

with our PDE techniques is the convergent speed of

finite-difference approximation for initial shapes. Thus,

faster numerical approximation techniques for solving

PDEs need to be considered to improve the time

performance of our PDE modeling system.

Fig. 14. System architecture and functionalities.

Table 1

CPU time (seconds) of different solvers for several examples of implicit

PDE objects with different number of constraints

Examples Constraints Initial 2nd(s) 4th(s)

Fig. 3 169888 N/A 1.542 7.992

Fig. 4 274086 N/A 3.04 13.7

Fig. 6a 180 5.889 N/A 379.766

Fig. 6b 720 18.872 N/A 416.312

Fig. 8a 1219 267.925 N/A 113.432

Fig. 8e 3154 359.657 N/A 148.283

Table 2

CPU time (seconds) of local direct manipulation examples of implicit PDE

objects

Examples Cons Grids 4th(s)

Iso-contour Editing (Fig. 10c) 8 1792 0.45

Region Deformation (Fig. 10d) 507 6358 3.17

CSG-like Blending (Fig. 10f) 108 1000 1.15

Sharp-feature Creation (Fig. 10g) 98 5046 0.23

Cutting-1 (Fig. 10h) 216 1000 0.82

Cutting-2 (Fig. 10i) 216 1000 0.82

Gradient Sculpting (Fig. 12) 7 294 0.09

Curvature Manipulation (Fig. 13) 7 294 0.09

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–11161114

129

7. Conclusion

We have unified the popular implicit function techniques

with the powerful parametric PDE framework to demonstrate

more modeling advantages of the PDE-based paradigm. Our

prototype system supports interactive shape design of

implicit PDE objects through global and local deformation

of scattered data points or sketch curves. The implicit PDE

model can be defined as the solution of the elliptic PDEs over

a scalar intensity field with either scattered-point datasets or a

set of sketch curves as generalized boundary and additional

constraints. Our implicit PDE approach can also provide an

approximation for the missing or blending part in the

working space with most of the intensity information already

known. Our software environment offers users a set of

interactive and direct shape modeling toolkits including:

sketch curve sculpting and gradient manipulation, intensity

value modification in selected regions, gradient and curva-

ture manipulations inside the working space, and iso-contour

manipulation of specified intensity value inside the volu-

metric domain. These toolkits provide users an intuitive

interface to model implicit PDE objects satisfying a set of

design criteria and functional requirements. Our integrated

approach and novel PDE techniques further expand the

geometric coverage and the topological flexibility of the

conventional PDE methodology to implicit functions, and

forge ahead toward the realization of the full potential of PDE

technology in shape modeling and other visual computing

fields.

Acknowledgements

This research was supported in part by the NSF ITR grant

IIS-0082035, the NSF grant IIS-0097646, the NFS grant

CCR-0328930, the NSF ITR grant IIS-0326388, Alfred

P. Sloan Fellowship, and Honda Initiation Award.

References

[1] Bærentzen A, Christensen N. Volume sculpting using level-set

method. In Shape Modeling International 2002, Banff, Alberta,

Canada; 2002. p. 175–82.

[2] Bertalmio M, Sapiro G, Caselles V, Ballester C. Image inpainting. In

SIGGRAPH 2000, New Orleans, USA; 2000. p. 417–24.

[3] Bloomenthal J, Bajaj C, Blinn J, Cani-Gascuel M-P, Rockwood A,

Wyvill B, Wyvill G. Introduction to Implicit Surfaces. Los Altos, CA:

Morgan Kaufmann; 1997.

[4] Bloomenthal J, Wyvill B. Interactive techniques for implicit

modeling. Comput Graphics 1990;24(2):109–16.

[5] Bloor MIG, Wilson MJ. Generating blend surfaces using partial

differential equations. Comput Aided Des 1989;21(3):165–71.

[6] Bloor MIG, Wilson MJ. Using partial differential equations to

generate free-form surfaces. Comput Aided Des 1990;22(4):

202–12.

[7] Bloor MIG, Wilson MJ. Functionality in solids obtained from partial

differential equations. Computing Suppl 1993;8:21–42.

[8] Breen D, Whitaker R. A level-set approach for the metamorphosis of

solid models. IEEE Transact Vis Comput Graphics 2001;7(2):

173–92.

[9] Carr J, Beatson R, Cherrie J, Mitchell T, Fright W, McCallum B.

Reconstruction and representation of 3D objects with radial basis

functions. In SIGGRAPH 2000, Los Angeles, USA; 2001. p. 67–

76.

[10] Cohen-Or D, Levin D. Three-dimensional distance field metamor-

phosis. ACM Transact Graphics 1998;17(2):116–41.

[11] Cutler B, Dorsey J, McMillan L, Müller M, Jagnow R. A procedural

approach to authoring solid models. In SIGGRAPH 2002, San

Antonio, TX; 2002. 302–11.

[12] Desbrun M, Cani-Gascuel M-P. Active implicit surfaces for

animation. Graphics Interface 1998;143–50.

[13] Desbrun M, Tsingos N, Gascuel M-P. Adaptive sampling of implicit

surfaces for interactive modelling and animation. Comput Graphics

Forum 1996;15(5):319–25.

[14] Du H, Qin H. Direct manipulation and interactive sculpting of PDE

surfaces. Comput Graphics Forum 2000;19(3):C261–70.

[15] Du H, Qin H. Dynamic PDE surfaces with flexible and

general constraints. In Pacific Graphics 2001, Hong Kong; 2000.

p. 213–22.

[16] Du H, Qin H. Integrating physics-based modeling with PDE solids for

geometric design. In Pacific graphics, Tokyo, Japan; 2001. p. 198–

207.

[17] Ebert DS, Musgrave FK, Prusinkiewicz P, Stam J, Tessendorf J.

Simulating nature: from theory to practice. SIGGRAPH 2000 Course

notes 25; 2000.

[18] Ferley E, Cani M, Gascuel J. Practical volumetric sculpting. Visual

Comput 2000;16(8):469–80.

[19] Foster N, Metaxas D. Realistic animation of liquids. In Proceedings of

GI; 1996. p. 204–12.

[20] Foster N, Metaxas D. Modeling the motion of hot, turbulent gas. In

SIGGRAPH 1997, Los Angeles, CA, USA; 1997. p. 181–8.

[21] Frisken S, Perry R, Rockwood A, Jones T. Adaptive sampled distance

fields: a general representation of shape for computer graphics. In

SIGGRAPH 2000, New Orleans, USA; 2000. p. 249–54.

[22] Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface

reconstruction from unorganized points. In SIGGRAPH 1992; 1992.

p. 71–8.

[23] Hua J, Qin H. Haptic sculpting of volumetric implicit functions. In

Pacific Graphics 2001, Tokyo, Japan; 2001. p. 254–64.

[24] Hua J, Qin H. Dynamic implicit solids with constraints for haptic

sculpting. In Shape Modeling International 2001, Banff, Alberta,

Canada; 2002. p. 119–28.

[25] Lorensen W, Cline H. Marching cubes: a high resolution 3D surface

construction algorithm. In SIGGRAPH 1987; 1987. p. 163–9.

[26] Morse B, Yoo T, Rheingans P, Chen D, Subramanian K. Interpolating

implicit surfaces from scattered surface data using compactly

supported radial basis functions. In Shape Modeling International

2001, Genova, Italy; 2001. p. 89–98.

[27] Muraki S. Volumetric shape description of range data using blobby

model. Comput Graphics 1991;25(4):227–35.

[28] Museth K, Breen D, Whitaker R, Barr A. Level set surface

editing operators. In SIGGRAPH 2002, San Antonio, TX, USA;

2002. p. 330–8.

[29] Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel H-S. Multi-level

partition of unity implicits. In SIGGRAPH 2003, San Diego, USA;

2003. p. 463–70.

[30] Perry R, Frisken S. Kizamu: a system for sculpting digital characters.

In SIGGRAPH 2001, Los Angeles, USA; 2001. p. 47–56.

[31] Press WH, Teulolsky SA, Vetterling WT, Flannery BP. Numerical

recipes in C. Cambridge University Press; 1993.

[32] Raviv A, Elber G. Three dimensional freeform sculpting via zero sets

of scalar trivariate functions. In Proceedings of 5th ACM Symposium

on Solid Modeling and Applications, Ann Arbor, Michigan, United

States; 1999. p. 246–257.

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–1116 1115

130

[33] Sarti A, Tubaro S. Multiresolution implicit object

modeling. In VMV 2001, Stuttgart, Germany; 2001. p. 93–100.

[34] Savchenko VV, Pasko AA, Okunev OG, Kunii TL. Function

representation of solids reconstructed from scattered surface points

and contours. Comput Graphics Forum 1995;14(4):181–8.

[35] Schneider R, Kobbelt L. Generating fair meshes with G1 boundary

conditions. In Geometric Modeling and Processing Conference

Proceedings; 2000. p. 251–61.

[36] Sclaroff S, Pentland A. Generalized implicit functions for computer

graphics. Comput Graphics 1991;25(4):247–50.

[37] Stam J. Stable fluids. In SIGGRAPH 1999, Los Angeles, CA, USA;

1999. p. 121–7.

[38] Strang G. Introduction to applied mathematics. Wellesley-Cambridge

Press; 1986.

[39] Turk G, Dinh HQ, O’Brien J. Implicit surfaces that interpolate. In

Shape Modeling International 2001, Genova, Italy; 2001. p. 62–71.

[40] Turk G, O’Brien J. Shape transformation using variational

implicit functions. In SIGGRAPH 1999, Los Angeles, CA, USA;

1999. p. 335–42.

[41] Turk G, O’Brien J. Modeling with implicit surfaces that interpolate.

ACM Transact Graphics 2002;21(4):855–73.

[42] Ugail H, Bloor MIG, Wilson MJ. Techniques for interactive design

using the PDE method. ACM Transact Graphics 1999;18(2):

195–212.

[43] Whitaker R, Breen D. Level-set models for the deformation of solid

objects. In Conference of Implicit Surface 1998, Seattle, USA; 1998.

p. 19–36.

[44] Witkin A, Heckbert P. Using particles to sample and control implicit

surfaces. In SIGGRAPH 1994; 1994. p. 269–77.

[45] Zhang JJ, You L. Surface representation using second, fourth and

mixed order partial differential equations. In Shape Modeling

International 2001, Genova, Italy; 2001. p. 250–6.

[46] Zhao HK, Osher S, Fedkiw R. Fast surface reconstruction using level

set method. In IEEE Workshop on Variational and Level Set Methods

(VLSM 01) Vancover, Canada; 2001. p. 194–202.

[47] Zhao HK, Osher S, Merriman B, Kang M. Implicit and non-

parametric shape reconstruction from unorganized points using

variational level set method. Comput Vision Image Understanding

2000;80(3):295–319.

Haixia Du is a PhD candidate in the Computer

Science Department at the State University of

New York (SUNY) at Stony Brook, where she

is also a Research Assistant in the Center for

Visual Computing (CVC), SUNY at Stony

Brook. Haixia received her BS degree in

Computer Science from Jilin University in

Changchun, P.R. China in 1995 and her ME

degree in Computer Science from Institute of

Mathematics, Chinese Academy of Sciences in

Beijing, P.R. China in 1998. She also received

her MS degree in Computer Science from

SUNY at Stony Brook in 2000. Her research interests include geometric

and physics-based modeling, computer animation and simulation, visual-

ization, and computer graphics. For more information, see http://www.cs.

sunysb.edu/~dhaixia

Dr Hong Qin is an Associate Professor of

Computer Science at the State University of

New York at Stony Brook, where he is also a

member of the SUNYSB Center for Visual

Computing. He received his BS degree (1986)

and his MS degree (1989) in Computer Science

from Peking University in Beijing, P.R. China.

He received his PhD degree (1995) in Compu-

ter Science from the University of Toronto.

From 1989–1990 he was a research scientist at

North-China Institute of Computing Technol-

ogies. From 1990 – 1991 he was a PhD

candidate in Computer Science at the University of North Carolina at

Chapel Hill. From 1996–1997, he was an Assistant Professor of Computer

and Information Science and Engineering at the University of Florida. In

1997, Dr Qin was awarded the NSF CAREER Award from the National

Science Foundation (NSF), and, in September, 2000, was awarded a newly-

established NSF Information Technology Research (ITR) grant. In

December, 2000, he received a Honda Initiation Grant Award, and, in

April, 2001, was selected as an Alfred P. Sloan Research Fellow by the Sloan

Foundation. He is a member of ACM, IEEE, SIAM, and Eurographics.

H. Du, H. Qin / Computer-Aided Design 36 (2004) 1101–11161116

131

http://www.cs.sunysb.edu/~dhaixia
http://www.cs.sunysb.edu/~dhaixia

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Motivation

• Desirable property for an implicitly defined surface:
Locality
– Trade-off between accuracy and smoothing

Why? Noisy input data
– Efficient processing of input points

Why? Large number of points
– Efficient computation of scalar values

Why? Large number of evaluations

132

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Motivation

• Desirable property for an implicitly defined surface:
Locality
– Trade-off between accuracy and smoothing

Why? Noisy input data
– Efficient processing of input points

Why? Large number of points
– Efficient computation of scalar values

Why? Large number of evaluations

Introduction & Basics

• Introduction & Basics
– Notation, functional approximation

• Multi-level Partition of Unity Implicits
– Implicit approximation, sharp features, computation, results

• Extensions
– Other spatial arrangements
– Faster rendering

133

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Introduction & Basics

• Notation, Terms
– Regular/Irregular, Approximation/Interpolation, Global/Local

• Standard interpolation/approximation techniques
– Global: Triangulation, Voronoi-Interpolation, Least Squares

(LS), Radial Basis Functions (RBF)
– Local: Shepard/Partition of Unity Methods, Moving LS

• Problems
– Sharp edges, feature size/noise

• Functional -> Manifold

Introduction & Basics

• Notation, Terms
– Regular/Irregular, Approximation/Interpolation, Global/Local

• Standard interpolation/approximation techniques
– Global: Triangulation, Voronoi-Interpolation, Least Squares

(LS), Radial Basis Functions (RBF)
– Local: Shepard/Partition of Unity Methods, Moving LS

• Problems
– Sharp edges, feature size/noise

• Functional -> Manifold

134

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Notation

• Consider functional (height) data for now
• Data points are represented as

– Location in parameter space

– With certain height

• Goal is to approximate f from

!

p
i

!

fi = f pi()

!

fi,pi

Terms: Approximation/Interpolation

• Noisy data ⇒ Approximation

• Perfect data ⇒ Interpolation

135

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Terms: Global/Local

• Global approximation

• Local approximation

• Locality comes at the expense of fairness

Introduction & Basics

• Terms
– Regular/Irregular, Approximation/Interpolation, Global/Local

• Standard interpolation/approximation techniques
– Global: Triangulation, Voronoi-Interpolation, Least Squares

(LS), Radial Basis Functions (RBF)
– Local: Shepard/Partition of Unity Methods, Moving LS

• Problems
– Sharp edges, feature size/noise

• Functional -> Manifold

136

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Least Squares

• Fits a primitive to the data

• Minimizes squared distances between the
pi’s and primitive g

!

min
g

f i " g pi()()
2

i

#
!

g(x) = a + bx + cx
2

Least Squares - Example

• Primitive is a (univariate) polynomial

•

• Linear system of equations

!

g(x) = 1,x,x
2
,...() " cT

!

min f i " 1, pi, pi
2
,...()cT()

2

i

$

0 = 2pi
j
f i " 1, pi, pi

2
,...()cT()

i

#

137

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Least Squares - Example

• Resulting system

!

0 = 2pi
j
f i " 1, pi, pi

2
,...()cT()

i

$

1 pi pi
2

K

pi pi
2

pi
3

pi
2

pi
3

pi
4

M O

%

&

'
'
'
'

(

)

*
*
*
*

i

#

c
0

c
1

c
2

M

%

&

'
'
'
'

(

)

*
*
*
*

= 2 fi

1

pi

pi
2

M

%

&

'
'
'
'

(

)

*
*
*
*

i

#

Radial Basis Functions

• Represent approximating function as
– Sum of radial functions r

– Centered at the data points pi

!

f x() = w
i
r p

i
" x()

i

#

138

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Radial Basis Functions

• Solve

to compute weights wi
• Linear system of equations
!

f j = wir pi "p j()
i

#

!

r 0() r p
0
"p

1() r p
0
"p

2() L

r p
1
"p

0() r 0() r p
1
"p

2()
r p

2
"p

0() r p
2
"p

1() r 0()
M O

$

%
%
%
%

&

'

(
(
(
(

w
0

w
1

w
2

M

$

%
%
%
%

&

'

(
(
(
(

=

f
0

f
1

f
2

M

$

%
%
%
%

&

'

(
(
(
(

Radial Basis Functions

• Solvability depends on radial function

• Several choices assure solvability
– (thin plate spline)

– (Gaussian)
• h is a data parameter

• h reflects the feature size or anticipated spacing among
points

!

r d() = d2 logd

!

r d() = e"d
2
/ h

2

139

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

• Monomial, Lagrange, RBF share the same
principle:
– Choose basis of a function space
– Find weight vector for base elements by solving

linear system defined by data points
– Compute values as linear combinations

• Properties
– One costly preprocessing step
– Simple evaluation of function in any point

Function Spaces!

• Problems
– Many points lead to large linear systems
– Evaluation requires global solutions

• Solutions
– RBF with compact support

• Matrix is sparse
• Still: solution depends on every data point, though drop-off

is exponential with distance

– Local approximation approaches

Function Spaces?

140

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Introduction & Basics

• Terms
– Regular/Irregular, Approximation/Interpolation, Global/Local

• Standard interpolation/approximation techniques
– Global: Triangulation, Voronoi-Interpolation, Least Squares

(LS), Radial Basis Functions (RBF)
– Local: Shepard/Partition of Unity Methods, Moving LS

• Problems
– Sharp edges, feature size/noise

• Functional -> Manifold

Shepard Interpolation

• Approach:

with basis functions

• define

!

"i x() =
x # x i

p

x # x j

p

j
$

!

f(x) = "i x() f i
i

#

!

f(pi) = f i = lim
x"p i

f(x)

141

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Shepard Interpolation

• f(x) is a convex combination of φi,
because all

• f(x) is contained in the convex hull of data points

•
Data points are saddles

• global interpolation
every f(x) depends on all data points

• Only constant precision, i.e. only constant functions are
reproduced exactly

!

"
i
0,1[] and "

i
x()$ %1

!

p
i

{ } >1" f(x)# C
$

 and % f p
i() = 0

Shepard Interpolation

Localization:
• Set

• with

for reasonable Ri and ν >1
no constant precision because of possible holes

in the data

!

f(x) = µi x()"i x() f i
i

#

!

µ
i
x() =

1" x "p
i
R
i()
#

 if x "p
i

< R
i

0 else

$
%
&

' &

142

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Partition of Unity Methods

Partition of Unity Methods

• Subdivide domain into cells

143

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Partition of Unity Methods

• Compute local interpolation per cell

Partition of Unity Methods

• Blend local interpolations?

144

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Partition of Unity Methods

• Subdivide domain into overlapping cells

Partition of Unity Methods

• Compute local interpolations

145

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Partition of Unity Methods

• Blend local interpolations

Partition of Unity Methods

• Weights should
– have the (local) support of the cell

146

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Partition of Unity Methods

• Weights should
– sum up to one everywhere (Shepard weights)

– have the (local) support of the cell

Hierarchical Approximation

147

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Hierarchical Approximation

• Subdivide domain into overlapping cells

Hierarchical Approximation

• Compute local least squares approximations

148

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Hierarchical Approximation

• Compute local approximation error

Hierarchical Approximation

• Subdivide cells with large error

149

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Hierarchical Approximation

• Recompute local approximations per cell

Hierarchical Approximation

• Subdivide again where error is high

150

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Hierarchical Approximation

• Approximate again

Hierarchical Approximation

• Once approximation error is bounded
everywhere: blend using Shepard weights

151

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Functional  Manifold

• Standard techniques are applicable
if data represents a function

• Manifolds are more general
– No parameter domain

– No knowledge about neighbors

Overview

• Introduction & Basics
– Notation, functional approximation

• Multi-level Partition of Unity Implicits
– Implicit approximation, sharp features, computation, results

• Extensions
– Other spatial arrangements
– Faster rendering

152

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Implicits

• Idea: Represent 2-manifold as zero-set of a
scalar function in 3-space
– Inside:

– On the manifold:

– Outside:

!

f x() > 0

Implicits - Illustration

• Image courtesy Greg Turk

153

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Implicits from point samples

• Function should be zero
in data points
–

• Use standard
approximation techniques
to find f

• Trivial solution:
• Additional constraints are

needed

!

f p
i() = 0

!

f = 0

0

Implicits from point samples

• Constraints define inside
and outside

• Simple approach (Turk,
O’Brien)
– Sprinkle additional

information manually
– Make additional information

soft constraints

−

−

−

−

−

−

+

+

+

+

+

+

+

154

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Implicits from point samples

• Use normal information

• Normals could be
computed from scan

• Or, normals have to be
estimated

Estimating normals

• Normal orientation
(Implicits are signed)
– Use inside/outside

information from scan

• Normal direction
by fitting a tangent
– LS fit to nearest neighbors
– Weighted LS fit
– MLS fit

n

q

155

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Estimating normals

• General fitting problem

– Problem is non-linear
because n is constrained
to unit sphere

n
q

!

min
n =1

q"p
i
,n

2
q"p

i()
i

$

Estimating normals

• The constrained minimization problem

is solved by the eigenvector corresponding to the
smallest eigenvalue of the following co-variance
matrix

which is constructed as a sum of weighted outer
products.

!

min
n =1

q"p
i
,n

2
#
i

i

$

!

q"p
i() #

i

$ q"p
i()
T

%
i

156

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Implicits from point samples

• Compute non-zero
anchors in the distance
field

• Use normal information
directly as constraints

+1

+1

+1

+1

+1

+1

+1+1

+1

+1

+1 +1

!

f p
i
+ n

i() =1

PuO Implicits

• Construct a spatial
subdivision

• Compute distance values
• Compute local distance

field approximations
– e.g. Quadrics

• Blend them with
local Shepard weights

−2.5

+0.5

+1 +1

+0.5+2.5 +2

+2 +1.5

157

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

max-norm errormax-norm error
is computedis computed

 error > threshold error > threshold 
 region is subdivided region is subdivided local approx.local approx.

are recomputedare recomputed

Multi-level PuO Implicits

• Adaptive octree subdivision

• Approximation type is chosen
 according to the deviation of normals.

Bivariate
quadratic polynomial
in local coordinates

General 3D
quadric

Local Approximations

• Second-order polynomial approximations by
least square fitting.

158

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Empty Ball
(need to compute

dist-function)
 expand the ball Now local

approximations
can be safely

computed

Too few points
  expand the ball

Local Approximations

• If an approximation ball does not contain a
sufficient number of points  expand the ball

Local approximations

• Degree? Why not linear?
• 128 linear elements

• 450 linear elements

• 105 quadratic elements

159

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Points Polygonization of f=0

Quadrics & Sharp Features

CornerCorner
 function function

EdgeEdge
functionfunction

StandardStandard
quadricquadric

Piecewise quadric
functions

Local analysis of Local analysis of
points and points and normalsnormals

Sharp features

160

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Clustering Clustering NormalsNormals
  Clustering Clustering PointsPoints

max/min Booleanmax/min Boolean
operations operations 

piecewise smoothpiecewise smooth
locallocal

approximationsapproximations

Sharp Features

• Edges and corners are recognized by
analyzing angles between normals.
[Kobbelt et al. 2001]

Computing Computing f(f(xx))
recursivelyrecursively

x

• On-the-fly during
– polygonization

– rendering

– function-based operations

– …

Computing approximation at x

161

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Performance

35K points35K points

91K triangles91K triangles

RAM: 34 MBRAM: 34 MB
Time: 7 sec.Time: 7 sec.
 ((1.6 GHz P4)

Accuracy: 0.25%Accuracy: 0.25%

RAM: 195 MBRAM: 195 MB
Time: 99 sec.Time: 99 sec.
((1.6 GHz P4)

Accuracy: 0.08%Accuracy: 0.08%

433K points433K points

820K triangles820K triangles

Comparison w/ CSRBF

RAM: 195 MBRAM: 195 MB
Time: 99 sec.Time: 99 sec.

(Pentium4 1.6 GHz)(Pentium4 1.6 GHz)

RAM: 306MBRAM: 306MB
Time: 170 min.Time: 170 min.

(Pentium3 550 MHz)(Pentium3 550 MHz)

[Carr et al. SIG01][Carr et al. SIG01]MPU MPU ImplicitsImplicits

100!

3!

Reconstruction Reconstruction
with 0.08% accuracywith 0.08% accuracy

162

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Multi-level PuO Implicits

• Local computations
– Insensitive to number of points

– Different local approximations
depending on normal statistics

• Local adaptation to shape
complexity

• Sensitive to output complexity
• Source code (and more info):

www.mpi-sb.mpg.de/~ohtake/mpu_implicits/

Overview

• Introduction & Basics
– Notation, functional approximation

• Multi-level Partition of Unity Implicits
– Implicit approximation, sharp features, computation, results

• Extensions
– Other spatial arrangements
– Faster rendering

163

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Extensions

• Other spatial arrangements
– kD tree instead of Octree
– BSP tree instead of kD tree, geometry dependent cells
– Bounding sphere cover

• Faster rendering
– Blending intersections with polynomials along view rays

Geometry-dependent cells

• BSP based on a planarity heuristic
– Heuristic depends on the co-variances of positions

and normals

164

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Geometry-dependent cells

• BSP based on a planarity heuristic
– Cells are cropped to tightly bound curve/surface

Geometry-dependent cells

• BSP based on a
planarity heuristic
– In addition, bad aspect

ratios of cells are avoided

165

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Geometry-dependent cells

• BSP based on a planarity heuristic

 KD-tree 6 bit BSP 12 bit
22716 cells, 96 Kbytes 6269 cells, 55 Kbytes
e < 0.0135 e < 0.0064

Geometry dependent cells - results

• Compression 1:25 without entropy coding
– Other results for point-based geometry: 1:15-1:22

166

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Quantization (Bits) relative to error (Bbox)

Geometry dependent cells - results

Geometry dependent cells - problem

• Weight functions for blending: ideally
distance function to the cell

• Expensive computations

167

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Bounding volume hierarchy

• Cover point with spheres
– Until all points are multiply

covered

• Compute one normal per
cell

• Compute local bi-
polynomial approximations
– Convert them to implicits

Bounding volume hierarchy

• Multi-level approach
– Remove cells with large

error

– Re-cover with smaller
cells and repeat
procedure

168

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Bounding volume hierarchy

• Covering during the process

Quick rendering

• Right way: Find zero level-set of blended local
implicit functions on view rays
– One dimensional root finding on rational function

• Approximate: Find zero level-set of each local
implicit and blend locations
– One dimensional

root finding on
polynmials +
linear comb.

169

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Quick rendering

• Using only the first intersection reveals the
discontiuous surface representation

• Blending the intersections leads to good
results

Quick rendering

• The absolute error
(compared to the
‚right‘ intersections)
is overall small
– Error depends on

angle between
normal and view ray

170

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Quick rendering

• The absolute error
(compared to the
‚right‘ intersections)
is overall small
– Error depends on

angle between
normal and view ray

Quality rendering

• Quality rendering because of higher
order patches
– Better adaptation to non-monotone curvature

– No Phong artifacts from linear interpolation of
normals

• Example:
– Gaussian curvature vanishes on a line

– Compare analytical reflection lines, 50 poly
mesh, and 14 quadratic patches

171

Modern Techniques for Implic it Modeling Multi-level Partitions of Unity

Quality rendering

• Quality rendering because of higher order
patches
– Higher order differentials available

– Derivatives are blended just like intersection
locations

Conclusions

• Non-conforming representation
– Surface is approximated by individual patches

– Spatial covering defines local implicit approximations,
which define the patches

– Cells could use different types of approximations

– Blending patches yields surface representation

– All computations are local

• Fast, but no global properties guaranteed

172

Multi-level Partition of Unity Implicits

Yutaka Ohtake
MPI Informatik

Alexander Belyaev ∗

MPI Informatik
Marc Alexa

TU Darmstadt
Greg Turk

Georgia Tech
Hans-Peter Seidel
MPI Informatik

Abstract
We present a new shape representation, the multi-level partition of
unity implicit surface, that allows us to construct surface models
from very large sets of points. There are three key ingredients to our
approach: 1) piecewise quadratic functions that capture the local
shape of the surface, 2) weighting functions (the partitions of unity)
that blend together these local shape functions, and 3) an octree
subdivision method that adapts to variations in the complexity of
the local shape.

Our approach gives us considerable flexibility in the choice of
local shape functions, and in particular we can accurately represent
sharp features such as edges and corners by selecting appropriate
shape functions. An error-controlled subdivision leads to an adap-
tive approximation whose time and memory consumption depends
on the required accuracy. Due to the separation of local approxima-
tion and local blending, the representation is not global and can be
created and evaluated rapidly. Because our surfaces are described
using implicit functions, operations such as shape blending, offsets,
deformations and CSG are simple to perform.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: partition of unity approximation, error-controlled sub-
division, adaptive distance field approximation, implicit modeling.

1 Introduction
There are many applications that rely on building accurate models
of real-world objects such as sculptures, damaged machine parts,
archaeological artifacts, and terrain. Techniques for digitizing ob-
jects include laser rangefinding, mechanical touch probes, and com-
puter vision techniques such as depth from stereo. Some of these
techniques can yield millions of 3D point locations on the object
that is being digitized. Once these points have been collected, it
is a non-trivial task to build a surface representation that is faithful
to the collected data. Some of the desirable properties of a sur-
face reconstruction method include speed, low memory overhead,
the creation of surfaces that approximate rather than interpolate the
data (when noise or mis-registration is present), faithful reproduc-
tion of sharp features, and robustness in the presence of holes and
low sampling density.

In this paper we introduce a new class of implicit models that
was specifically designed to meet these requirements for rapidly
and accurately creating surfaces from large collections of points.
We use the name Multi-level Partition of Unity implicits (MPU)

∗ Currently with the University of Aizu, Aizu-Wakamatsu, Japan.

Figure 1: The Stanford Lucy, consisting of 14 million points, is reconstructed as an
MPU implicit with a 0.01% max-norm approximation accuracy; the left part of the
model is colored according to the subdivision level which increases from blue to red.
The four models in the back are reconstructed from the point set with increasing ap-
proximation error.

because at the heart of our method is a set of weighting functions
that sum to one at all points in the domain. Given a set of points
P = {p1, . . . ,pN} sampled from a surface in R

3, an MPU implicit
f : R

3 → R provides an adaptive error-controlled approximation of
the signed distance function from the surface. The approximation
is accurate near the surface and rough far from the surface. The sur-
face itself is then approximated by the zero level set of the distance
function. We assume that the points of P are equipped with unit
normals N = {n1, . . . ,nN} that indicate the surface orientation. In
practice, these normals can be estimated either from initial scans
during the shape acquisition phase or by local least-squares fitting
to P . We also consider the case when the surface is approximated
by a mesh and P is the set of mesh vertices. Then the normals N

are the mesh vertex normals.
To create our implicit representation, we start with a box that

bounds the point set and create an octree-based subdivision of this
box. At each cell of the octree, a piecewise quadratic function (the
local shape function) is created that fits the points in the cell. These
shape functions act much like a signed distance function, and take
on the value zero near the data points and become positive (inside)

173

or negative (outside) away from the data points. The approximate
normals of the points are used to distinguish this inside/outside ori-
entation locally. If the shape function approximation is not accurate
enough (doesn’t match the points well), the cell is subdivided and
the procedure is repeated until a certain accuracy is achieved. Fig-
ure 1 shows how the octree-levels adapt according to the relation
between local shape complexity and desired accuracy. In locations
near the common boundary of two or more cells, the shape func-
tions are blended together according to weights from the partition
of unity functions. The global implicit function of the surface is
given by this partition of unity blending of the local shape approxi-
mations at the octree leafs.

MPU implicits are conceptually simple, easy to implement, and
are capable of providing a fast, accurate, and adaptive reconstruc-
tions of complex shapes from scattered point data containing mil-
lions of points. The complexity of the approach is output sensi-
tive in the sense that the creation time and memory consumption
depend on the complexity of the reconstructed shape rather than
the number of data points. Since MPU implicits can deliver high-
accuracy shape approximations, function-based operations such as
shape blending, offsets, deformations and CSG can easily be ap-
plied. All of these same operations can be performed for data that
was originally in a parametric or polygonal form simply by con-
verting these shape descriptions to the MPU representation.

Previous work. Implicit shape representations are attractive be-
cause they allow a complex shape to be described by one for-
mula, they unify surface and volume modeling, and several com-
plex shape editing operations are easy to perform on such models
[Bloomenthal et al. 1997]. On the other hand, traditional pure im-
plicit surface modeling techniques lack local shape control. This
drawback has become especially noticeable with the development
of modern shape acquisition techniques that can generate data sets
consisting of thousands, millions, or even billions of points (see,
e.g., [Levoy et al. 2000]). The main advantages of using implicits
for shape reconstruction from scattered data are data repairing capa-
bilities and opportunities to edit the resulting objects using standard
implicit modeling operations.

Most implicit shape reconstructions from point sets are based
on Blinn’s idea of blending local implicit primitives [Blinn 1982].
Muraki [1991] uses a linear combination of Gaussian blobs to fit
an implicit surface to a point set. Hoppe et al. [1992] locally es-
timate the signed distance function as the distance to the tangent
plane of the closest point. Lim et al. [1995] use blended union
of spheres for implicit reconstruction of solids from scattered data.
They obtain an initial configuration of spheres from the Delaunay
tetrahedralization and a nonlinear optimization is then applied. Ba-
jaj et al. [1995] and Bernardini et al. [1999] combine algebraic
fitting with point data triangulation by adaptive α-shapes [Edels-
brunner and Mücke 1994]. A volumetric approach of Curless and
Levoy [1996] introduced for shape reconstruction from range scans
is based on estimating the distance function from a reconstructed
model. Savchenko et al. [1995], Carr et al. [2001], and Turk
and O’Brien [2002] use globally supported radial basis functions
(RBFs) while Morse et al. [2001], Kojekine et al. [2003], and
Ohtake et al. [2003] employ compactly supported RBFs to recon-
struct smooth surfaces from point cloud data. It seems that the state-
of-the-art in constructing implicit functions from large sets of scat-
tered points are RBF-based methods [Carr et al. 2001; Dinh et al.
2002; Turk and O’Brien 2002]. While RBF-based methods are es-
pecially useful for the repair of incomplete data, they face serious
difficulties in accurate reconstruction of sharp features [Dinh et al.
2001], may require a user intervention like choosing an appropriate
carrier solid [Kojekine et al. 2003], and can generate extra zero-
level sets [Ohtake et al. 2003]. In addition, since RBF solutions are
global in nature, processing millions of points seems to be beyond
the capabilities of most present day PCs.

The level set method [Zhao and Osher 2002] is another good can-
didate for reconstructing the signed distance function. However, its
current implementation becomes expensive in time and memory if
high accuracy reconstruction is required (although this might be im-
proved if adaptive grids are used). Projection-based approaches to
shape approximation [Alexa et al. 2001; Fleishman et al. 2003] have
the advantage that they are local (i.e. independent of the number of
data points) and directly yield a point on the surface. However, the
projection step requires the solution of a non-linear moving least
squares problem, which makes most practical shape operations ex-
pensive.

Our approach can be seen as a blend of several known techniques
that, together, result in an attractive method for reconstructing an
implicit function. One common RBF technique is to first divide
the data domain into several cells so that the data is broken into
manageable pieces [Beatson et al. 2000; Schaback and Wendland
2000; Iske 2001; Iske and Levesley 2002; Wendland 2002]. As a
particular method for domain decomposition, the partition of unity
approach (PU) of Franke and Nielson [1980] has been used as a
general FEM method in computational mechanics [Babuška and
Osborn 1994] and recently has become popular because it avoids
the topological overhead of constructing a mesh [Babuška and Me-
lenk 1997; Griebel and Schweitzer 2000; Griebel and Schweitzer
2002]. Our strategy for avoiding extra zero level sets is reminiscent
of [Moore and Warren 1991; Warren 1992], where an adaptive and
recursive volumetric subdivision was used. One could view our
MPU representations as being similar to adaptively sampled dis-
tance fields [Frisken et al. 2000], with the difference that the MPU
approach uses continuous rather than sampled functions.

When used with an appropriate choice of local shape approx-
imations, our approach has the following attractive features: the
ability to create high quality implicit surfaces from very large point
datasets, the accurate reconstruction of sharp features, and fast and
easy local shape access.

2 Partition of Unity Approach
The partition of unity approach is typically used to integrate lo-
cally defined approximants into a global approximation. Important
properties such as the maximum error and convergence order are
inherited from the local behavior. The basic idea of the partition
of unity approach is to break the data domain into several pieces,
approximate the data in each subdomain separately, and then blend
the local solutions together using smooth, local weights that sum up
to one everywhere on the domain.

More specifically, consider a bounded domain Ω in a Euclidean
space (we will work in 3D) and a set of nonnegative compactly
supported functions {ϕi} such that

∑i ϕi ≡ 1 on Ω.

Let us associate a local approximation set of functions Vi with each
subdomain supp

(

ϕi

)

. Now an approximation of a function f (x)
defined on Ω is given by

f (x) ≈ ∑i ϕi(x)Qi(x), (1)

where Qi ∈Vi.
Given a set of nonnegative compactly supported functions

{wi(x)} such that
Ω ⊂

⋃

i
supp

(

wi

)

,

partition of unity functions {ϕi} can be generated by

ϕi(x) =
wi(x)

∑n
j=1 w j(x)

. (2)

Approximation by means of Eqs. 1 and 2 constitutes the core of
the partition of unity finite element methods [Babuška and Osborn
1994]. They resemble the Modified Shepard’s method of Franke

174

and Nielson [1980] (see also [Renka 1988]), where polynomial lo-
cal approximations Qi(x) are used in combination with “inverse-
distance” singular weights

{

wi(x)
}

for interpolation purposes.
Given a set of scattered points P equipped with normals N , we

approximate the signed distance function f (x) from P . In contrast
to the approaches mentioned above, we introduce an adaptive pro-
cedure for generating the subdivision and problem-specific approx-
imation sets. First, we use an octree-based adaptive space subdivi-
sion of Ω. This allows us to control the error of the approximation
while adapting the complexity of the representation to the complex-
ity of the shape (see Section 3). Second, we use piecewise quadratic
functions resulting from Boolean operations for the accurate repre-
sentation of sharp features. The classification of local shapes and
appropriate approximation sets are discussed in Section 4.

For approximation purposes we use the quadratic B-spline b(t)
to generate weight functions

wi(x) = b

(

3
∣

∣x− ci

∣

∣

2Ri

)

(3)

centered at ci and having a spherical support of radius Ri.
If an interpolation of P is required, we use the inverse-distance

singular weights [Franke and Nielson 1980; Renka 1988]

wi(x) =

[
(

Ri −
∣

∣x− ci

∣

∣

)

+

Ri

∣

∣x− ci

∣

∣

]2

, where (a)+ =

{

a if a > 0
0 otherwise (4)

3 Adaptive Octree-based Approximation
The algorithm for constructing an MPU implicit is driven by re-
peated subdivision of the region of space that is occupied by the
input set of points. First, the points in P are rescaled so that an
axis-aligned bounding cube has a unit-length main diagonal. We
then apply an adaptive octree-based subdivision to the bounding
cube. Consider a cubic cell that was generated during the subdivi-
sion process, and let c be the center and d the length of the main
diagonal of the cell.

We define the support radius R for the weight function (3) for the
cell to be proportional to its diagonal:

R = αd. (5)
We typically use α = 0.75. A larger value for α yields better
(smoother) interpolation and approximation results at the expense
of computation time. Time complexity is roughly quadratic in α .
Figure 11 illustrates the effect of α , especially for the accurate ap-
proximation of the distance function away from the zero level set.

For each cell generated during the subdivision process, a local
shape function Q(x) is built using a least-squares fitting procedure,
as shown in the left drawing of Figure 2.

Sometimes (especially if the density of P is not uniform) the
ball of radius R for a cell does not contain enough points for a robust
estimation of Q(x). If the number of points is less than Nmin (in our
implementation we set Nmin = 15), a ball with increased radius R̂
is determined that contains at least Nmin points. This is done by
starting with R̂ = R and then iterating

R̂ = R̂+λR (6)
until the ball contains the minimum number of points (in our im-
plementation we set λ = 0.1). Now the points enclosed by the ball
of radius R̂ are used to estimate a local shape function Q(x), as
demonstrated in the right drawing of Figure 2.

We use a kd-tree partitioning for efficient solving of these range
searching problems.

If the ball around an octree cell with initial radius R = αd is
empty, an approximation of the distance function is computed as
explained above and it will not be subdivided further. Otherwise, a
local max-norm approximation error is estimated according to the
Taubin distance [Taubin 1991]

ε = max
|pi−c|<R

|Q
(

pi

)

|
/∣

∣∇Q
(

pi

)∣

∣ . (7)

R
c

i

i

i

f

Q x()=0

x()=0

R

c
R̂

Q()=0x

Figure 2: Left: adaptive subdivision coupled with least-squares fitting. Right: enlarg-
ing the spherical domain for the local approximation to make it more robust.

Figure 3: Left: a set of points equipped with normals. Middle: the circles (2D balls)
corresponding to the adaptive subdivision are shown here at 50% of their real size.
Right: the distance function is reconstructed, and the zero level set is located between
the yellow and green bands.

If ε is greater than a user-specified threshold ε0, the cell is subdi-
vided and the fitting process is performed for the child cells.

Figure 3 demonstrates how our adaptive subdivision scheme
works in 2D.

The following pseudocode describes a recursive procedure for
assembling an MPU approximation at point x with precision ε0.

EvaluateMPUapprox(x,ε0)

SwQ = Sw = 0;
root->MPUapprox(x,ε0);
return SwQ/Sw;

MPUapprox(x,ε0)

if (|x− ci| > Ri) then return;
if (Qi is not created yet) then

Create Qi and compute εi;
if (εi > ε0) then

if (No childs) then Create childs;
for each child

child->MPUapprox(x,ε0);
else

SwQ = SwQ +wi(x)∗Qi(x);
Sw = Sw +wi(x);

Here, Sw and SwQ denote ∑wi(x) and ∑Qi(x)wi(x), respectively,
see Eqs. 1 and 2.

This procedure is easy to implement. We hope that this will make
our approach and its implementation accessible to a wide range of
users.

Note that we abandon the local approximations that are con-
structed at the non-leaf cells of the octree. This allows us to use
different local approximations of the distance function far from P

and near to P , as well as specific sharp feature approximations,
without compensating for the effects of coarse approximations. In-
heriting coarse approximations would also require us to counteract
already generated zero-sets in empty balls. In addition, avoiding
coarse approximations saves memory and results in faster evalua-
tion of the implicit function.

4 Estimating Local Shape Functions
Our local fitting strategy depends on the number of points in the
ball of a given cell and the distribution of normals of those points.
At a given cell we use the most appropriate one of these three local
approximations:

(a) a general 3D quadric,
(b) a bivariate quadratic polynomial in local coordinates,
(c) a piecewise quadric surface that fits an edge or a corner.

Roughly speaking, (a) is used to approximate larger parts of the
surface, which could be unbounded or contain more than one sheet,
(b) is used to approximate a local smooth patch, and (c) is employed

175

w

u,v

R

c

Q x()=0

R

c

q

1

2

= q

d2

d1

Q x()=0

Figure 4: Left: fitting a bivariate quadratic polynomial. Right: local fit of a general
quadric; auxiliary points located at the cell center and corners are used in order to
achieve an accurate approximation of the distance function.

to reconstruct sharp features. Actually (c) consists of a number of
tests (an edge test and corner tests) in order to determine the type
of approximation surface that should be used.

A few simple tests are performed to select from among the three
types of local shape functions. If there are more than 2Nmin points
in the local ball, we use a function of type (a) or (b). An average
normal direction is computed for the points and if the maximum
deviation of normals to the average is more than π/2 then we fit
with (a), otherwise we use type (b). If there are fewer than 2Nmin
points associated with a cell, more detailed checks are made to see
if an edge or corner is present, and details of this are given below.
Why don’t we look for sharp features when there are more than
2Nmin points? Because the sharp feature detection adds computa-
tional complexity and the octree subdivision procedure takes care of
this, anyway. Should the surface actually contain a corner or edge
near such a cell, then the quality-of-fit measure (7) will cause the
cell to be divided, and the sharp feature will be fit by one or more
child cells.

In the following sub-sections we will describe each of the three
local shape functions in more detail. The notation we use in these
sections is as follows. Let c be the center of a subdivision cubic cell
where we want to construct a local shape function Q(x). We denote
by P ′ the points of P that are inside the ball of the cell. Let n
be a unit normal vector assigned to c. This normal n is computed
from the normalized weighted arithmetic mean of the normals of
P ′ taken with the weights defined by (3). Let θ be the maximal
angle between n and the normals N ′ assigned to the points of P ′.

(a) Local fit of a general quadric. If
|P ′| > 2Nmin and θ ≥ π/2

a 3D quadratic surface is fitted. Usually this corresponds to a sit-
uation sketched in the right drawing of Figure 4. A local shape
function is given by

Q(x) = xTAx+bT x+ c (8)
where A is a symmetric 3×3 matrix, b is a vector of three compo-
nents, and c is a scalar. In order to determine the unknowns A, b,
and c we make use of auxiliary points

{

qi

}

to help orient the local
shape function. These points are chosen as the corners and the cen-
ter of the subdivision cell, as demonstrated in the right picture of
Figure 4.

Each auxiliary point q is tested for whether it can be used to
obtain a reliable estimate of the signed distance function. For each
q, its six nearest neighbors p(1),p(2), . . . ,p(6) from P ′ are found
and the scalar products

n(i) ·
(

q−p(i)
)

, i = 1,2, . . . ,6, (9)

are computed. If not all the scalar products have the same sign,
q is removed from the set of auxiliary points. The geometric idea
behind this test is explained by the left drawing of Figure 5.

If the set of remaining auxiliary points is empty, the cell is sub-
divided.

For each remaining auxiliary point q, an average distance d, the
arithmetic mean of the scalar products (9), is computed

d =
1
6

6

∑
i=1

n(i) ·
(

q−p(i)
)

. (10)

q
q

Figure 5: Left: Testing whether an auxiliary point q can be used to obtain a reliable
estimate of the signed distance function. The green q is reliable, but the magenta q is
not. Right: Detection of sharp features is done by clustering of point normals.

Finally the unknowns in (8) are found by minimizing

1

∑w
(

pi

) ∑
pi∈P ′

w
(

pi

)

Q(pi)
2 +

1
m

m

∑
i=1

(

Q(qi)−di

)2
, (11)

where m is the number of remaining points q.

(b) Local fit of a bivariate quadratic polynomial. If

|P ′| > 2Nmin and θ < π/2

a bivariate quadratic polynomial is locally fitted. Let us introduce
local coordinates (u,v,w) with the origin of coordinates at c such
that the plane (u,v) is orthogonal to n and the positive direction of
w coincides with the direction of n. A quadratic shape function at c
is given by

Q(x) = w−
(

Au2 +2Buv+Cv2 +Du+Ev+F
)

, (12)

where (v,u,w) are the coordinates of x in the new coordinate sys-
tem. The unknown coefficients A, B, C, D, E, and F are determined
by minimizing

∑
pi∈P ′

w
(

pi

)

Q(pi)
2. (13)

The left drawing of Figure 4 illustrates the geometric idea behind
local fitting of a bivariate quadratic polynomial.

(c) Local approximation of edges and corners. The
quadratic functions (12) and (8) considered above are not capable
of accurately capturing sharp edges and corners. If there are just
a few points associated with a cell (|P ′| ≤ 2Nmin), we try to fit a
piecewise quadratic function instead of a quadratic approximation.

We perform automatic recognition of edges and corners using a
simple but effective procedure proposed by Kobbelt et al. [2001].
The idea is based on clustering of normals, as demonstrated by the
right drawing of Figure 5.

Following [Kobbelt et al. 2001] we assume that the surface has a
sharp feature if

mini, j

(

ni ·n j

)

< 0.9. (14)

If (14) is not satisfied, we go to (b) and local bivariate polyno-
mial (12) is fitted to P ′. Otherwise we check whether the detected
feature is a corner. We consider n3 = n1 × n2, the normal vector
to the plane determined by the normals n1 and n2 enclosing the
maximal angle. If the deviation of the normals ni from the plane is
sufficiently large

maxi

∣

∣ni ·n3

∣

∣> 0.7 (15)

the feature is recognized as a corner.
If (14) is satisfied and (15) is not, we expect the surface to have

an edge and subdivide the set of normals
{

ni

}

into two clusters
according to their angles with n1 and n2 (two spherical Voronoi
subsets corresponding to n1 and n2). Denote by P ′

1 and P ′
2, P ′ =

P ′
1∪P ′

2, two subsets corresponding to the clusters of the normals.
Now the quadratic fit procedure is applied separately to P ′

1 and
P ′

2 and a non-smooth local shape function approximation P ′ is
constructed via the max/min Boolean operations of Ricci [1973].

If (14) and (15) are satisfied, we subdivide N ′ into three sets.
First N ′

1 and N ′
2 are constructed as above. Next we check whether

∣

∣

∣
n1,2 ·ni

∣

∣

∣
<
∣

∣n3 ·ni

∣

∣ and add point pi to the third cluster if the in-

equality is satisfied.

176

Figure 6: Left: Eye from Stanford’s reconstruction of Michalangelo’s David (scanned
at 1mm resolution). Right: The eye is reconstructed as an MPU implicit with relative
accuracy ε0 = 10−4.

We also treat separately corners of degree four: test (14) is ap-
plied to the normals of the third cluster and if (14) is satisfied, the
cluster is subdivided into two pieces. If the resulting four clusters
of normals correspond to either a convex or concave corner, it is
reconstructed via Boolean operations. Otherwise, we go to (a) and
a general quadric (8) is fitted to P ′.

If the number of points used to estimate the coefficients of bi-
variate quadratic polynomial (12) is less then six, we set all the
unknown coefficients in (12) equal to zero.

Given the above approach, more complex types of sharp fea-
tures (for example, a saddle corner of degree 4) are approximated
by smooth functions. Notice however that “generic” sharp features
are obtained from the intersections of two or three surfaces, and
therefore consist of edges and corners of at most degree 3. It is not
a generic event for four smooth surfaces to intersect at one point.

5 Visualization

Conventional techniques for visualizing implicit models include
polygonization (isosurface extraction), ray tracing, and volume ren-
dering. From among these various visualization methods, we use
Bloomenthal’s polygonizer [Bloomenthal 1994] because of its nice
continuation properties and the Hart sphere tracing method [Hart
1996]. These two methods both work well using the approximate
distance functions of MPU implicits.

If our goal is to create a polygonal mesh, we can save time and
memory by computing MPU approximations on the fly during the
polygonization process. We have found that an approximation ac-
curacy of ε0 = 10−4 (that is, 0.01% of the length of the main diag-
onal of the bounding box) is quite sufficient for the reconstruction
of fine features, as demonstrated by Figure 6.

If a non-adaptive surface extraction routine is used with an im-
plicit model that has sharp features, a fine sampling density is re-
quired to capture these features. An example of this can be seen
in the top and bottom left images of Figure 7. An alternative is
to use adaptive sampling and remeshing strategies such as those in
[Kobbelt et al. 2001; Ohtake and Belyaev 2002; Ju et al. 2002]. We
find it attractive to combine a low resolution Bloomenthal polygo-
nization with a postprocessing mesh optimization technique devel-
oped in [Ohtake and Belyaev 2002], as shown in the top middle, top
right, and bottom middle images of Figure 7.

Even higher quality rendering can be achieved using ray trac-
ing techniques. The sphere tracing method of Hart [1996] works
well together with MPU implicits since it uses the distance function
representation and it is quite capable of rendering implicit models
with sharp features. The bottom right image of Figure 7 shows an
MPU implicit model of the fandisk model that was rendered with
sphere tracing. The left image of Figure 8 shows sphere tracing of
a more complex implicit model. This model was generated from
a function-based operation (subtraction) applied to the dragon and
the David model, both represented as MPU implicits. Notice how
well the sharp features are reconstructed and rendered.

Figure 7: Visualization of the fandisk model implicitized with MPU. Top left: Bloo-
menthal polygonization was used; in spite of sufficiently high polygonization resolu-
tion (200K triangles) one can notice small aliasing defects along sharp features. Top
middle: a low resolution polygonization is applied. Top right: an optimized mesh (17K
triangles) is obtained from the low resolution mesh, the sharp features are accurately
reconstructed. Bottom left: a magnified part of the high resolution mesh. Bottom mid-
dle: the same part of the optimized mesh. Bottom right: a part of the model rendered
using Hart sphere tracing.

6 Results & Applications
In this section we discuss results and applications of approximat-
ing or interpolating MPU implicits for surface reconstruction from
range scans and incomplete point data, and function-based opera-
tions.

Approximation and Interpolation. Most of the illustrations in
this work have been generated using approximating MPU implicits
as described in Section 4. However, our MPU approach can also
be adapted to exact data point interpolation if we use a local inter-
polation method such as Franke and Nielson’s singular weights (4)
instead of (3).

Since MPU with (4) requires a deeper octree-based subdivision
(every nonempty subdivision cell contains only one point of P),
our interpolation procedure requires more memory resources than
the approximation one. For interpolation with singular weights (4)
the subdivision stops only when all of points of P have been placed
in their own cells. The ball around a nonempty octree cell is cen-
tered at the interpolated point inside the cell. We set α = 1.25 in
(5) in order to ensure that we cover the bounding box by the balls
around the octree cells.

For each cell containing one interpolated point p of P , its local
shape function Q(x) is defined by (12), where the origin of coor-
dinates of local coordinate system (u,v,w) is located at p (hence
F = 0 in (12)) and the positive direction of w coincides with the di-
rection of the averaged normal at p. We don’t use the normal of N

assigned to p because of stability problems common for Hermite-
like interpolation schemes. The unknown coefficients are deter-
mined by minimizing quadratic energy (13) with c = p. Now (1)
interpolates P because partition of unity functions

{

ϕi(·)
}

defined
by (2) satisfy

ϕi(p j) = δi j =

{

1 if i = j
0 if i 6= j and ∇ϕi(p j) = 0.

The right image of Figure 8 shows results of applying the MPU
interpolation and shape modeling operations (Boolean subtraction,
twisting) to the Stanford Buddha model.

Reconstruction from incomplete data. Reconstruction from
scattered point data with MPU implicits is robust with respect to
variations of point density, as demonstrated in Figure 9.

Reconstruction from range scans. MPU implicits can be used
to reconstruct 3D models from a collection of range scans. We have

177

Figure 8: CSG operations applied on MPU implicits. Left: sphere tracing of the sub-
traction of two MPU approximations. Right: boolean subtraction and twisting opera-
tions are applied to interpolating MPU implicits.

Figure 9: Reconstruction from a scattered point dataset with non-uniform density of
points.

found that if several range scans overlap, better results are obtained
if we take into account per-point measurement confidences during
the reconstruction process. If we treat all points the same, artifacts
can arise. If the accuracy threshold (7) is small, the MPU implicit
approximating the scan points can have wrinkles in the overlapping
regions. On the other hand, if (7) is not small enough, the MPU
implicit does not capture the fine geometric details of the scanned
model. In practice, a given position on the object can be measured
more accurately from some scanning directions than from others.
This notion of using confidence during surface reconstruction was
advocated in [Turk and Levoy 1994; Curless and Levoy 1996].

Consider a collection of points from range data. Assume that
each point pi is assigned a confidence weight ci, ci ∈ [0,1], that
were computed based on scanning information according to the
rules suggested in [Curless n. d.]. Now the MPU reconstruction
process described in previous sections is enhanced by the modifica-
tions given below.

• For a better estimation of local shape function Q(x), if the sum
of the confidence measures of the points inside the ball is less
than Nmin then the radius growth rule (6) is applied repeatedly
until the sum is above this threshold.

• Instead of (7), a weighted accuracy measure is used:
ε = maxci Q(pi)/|∇Q(pi)|.

• The unit normal vector n of the base plane (u,v) used to fit the
bivariate quadratic polynomial (12) is obtained by averaging
the neighboring normals with weights ciw(pi).

• Weights
{

ciw(pi)
}

are used in (13) and (11) instead of
{

w(pi)
}

.
• The normals in (10) are taken with the confidence weights

assigned to their corresponding points.
Figure 10 demonstrates the MPU reconstruction of the Stanford

Figure 10: Reconstruction of Stanford bunny from range data. Top left: bunny scan
data is rendered as a cloud of points, (all ten original range scans are used); defects
caused by low accuracy of some points and normals are clearly visible. Top middle: a
side range image of bunny is colored according to the confidence measure. Top right:
bunny is reconstructed as an MPU implicit. Bottom left: only six range scans of the
bunny scan data are rendered (an example of incomplete data). Bottom right: an MPU
implicit bunny from six scans.

f = 0.025 f = 0 f = −0.025

f = −0.075, α = 0.75 f = −0.075, α = 1.0

Figure 11: Offsetting of a knot model. The distance function to the knot is approxi-
mated by w = f (x,y,z). The first four models were generated with α = 0.75. For the
last model α = 1 was used and a higher quality offsetting was produced.

bunny from the original range scans. In one case we have used
only six scans, and in the other case we have used the full ten range
scans. Notice the ability of the MPU method to repair missed data.

Function-based shape modeling operations. Using MPU
implicits allow us to extend the power of function-based shape
modeling operations [Bloomenthal et al. 1997] to point set surfaces.
Given several MPU functions defined over the same bounding box
and having possibly different octree structures, at each point of the
box we evaluate the value of the result of applying functional oper-
ations to the functions. Then the level sets of the resulting function
are visualized via a polygonization or ray tracing.

An example of a CSG operation applied to two large and com-
plex point set surfaces was already demonstrated in Figure 8. Re-
sults of offsetting, smooth blending, morphing, and twisting opera-
tions [HyperFun: F-rep Library n. d.], [Pasko and Savchenko 1994]
are shown in Figures 11, 12, 13, 14 and the right image of Figure 8.
In particular, Figures 13 and 14 demonstrate a linear morphing of
two implicit models.1

1The linear morphing of implicit models w = f (x,y,z) and w = g(x,y,z) is an im-
plicit model defined by w = (1− t) f (x,y,z)+ tg(x,y,z).

178

Figure 12: Left: Smooth blending of the Stanford bunny and Cyberware Igea mod-
els. Right: offsetting of the Stanford dragon model; f = 0.0075 (top) and f = −0.01
(bottom); α = 0.75.

Figure 13: Linear blending of octahedron and cube.

7 Discussion
This paper describes a new implicit surface representation based on
local shape functions, partitions of unity, and an octree hierarchy.
Strengths of the Multi-Level Partition of Unity formulation include:

• Fast surface reconstruction and rendering.
• Representation of sharp features.
• Reconstruction from incomplete data.
• Choice of either approximation or interpolation of the data

and the ability to adaptively vary the approximation accuracy.

Given a point set model processed by the MPU method with a spec-
ified accuracy, the computational time and memory usage depends
on the geometric complexity of the model: the higher the geomet-
ric complexity, the deeper the octree is subdivided. This is clearly
demonstrated by Figure 1 where the reconstruction of fine features
requires a deeper subdivision.

Table 1 presents RAM memory usage and computational time
measurements for simultaneous generating and polygonizing vari-
ous point set models. Note that our method is quite fast. Our exper-
iments with state-of-the-art RBF-based 3D surface reconstruction
techniques such as FastRBF [Carr et al. 2001] and others suggest
that the MPU method is considerably faster than these other tech-
niques. 2

Model Number Relative Peak Number of Comp.

of points error RAM triangles time

Bunny 34,611 2.5×10−3 34 MB 91,104 0:07

Bunny scans 362,272 1.0×10−3 110 MB 219,676 1:46

Dragon 433,375 8.0×10−4 195 MB 819,704 1:39

Buddha 543,625 0.0 442 MB 648,332 6:53

David (2mm) 4,124,454 1.0×10−4 810 MB 1,296,522 10:33

Table 1: Memory and computational time measurements for genera-
tion + polygonization of MPU implicits for various point set models. Computations
were performed on a 1.6GHz Mobile Pentium 4 with 1GB RAM, and timings are
listed as minutes:seconds.

2 Comparing the results of Table 1 with those of Table 2 in [Carr et al. 2001] one
can find that the MPU method is 20-30 times faster than the FastRBF technique [Carr
et al. 2001].

Figure 14: Linear morphing of two head models approximated by MPU implicits, Max
Planck Head and Head of Michelangelo’s David.

Notice that processing time for the Buddha model is more than
three times longer then that for the dragon model which has a sim-
ilar size. This is because we reconstruct the Buddha by the MPU
interpolation which requires a deeper subdivision and wider support
for the corresponding partition of unity functions.

Because of its local nature, the MPU method is more sensi-
tive to the quality of input data, especially the field of normals,
to compare with the approximation and interpolation techniques
based on globally-supported RBFs [Carr et al. 2001; Turk and
O’Brien 2002]. Nevertheless, according to our experiments, the
MPU method is sufficient for accurate shape reconstruction from
a wide variety of data sets. The parameters in our current imple-
mentation of the MPU approach are adjusted for processing typical
outputs of laser scanner devices. We believe that the parameter
modifications needed for different classes of input are fairly intu-
itive in order to handle scattered data of lower (higher) quality at
the expense of lower (higher) computational speed.

Unlike the crust approach [Amenta et al. 1998], the MPU method
is not supported by rigorous results guaranteeing correct recon-
struction of input data satisfying certain properties described math-
ematically. It is a price we pay for a high speed of our method.

We would like also to stress here that our method is not an RBF
technique. RBF is a global approximation/interpolation method be-
cause of its global variational nature. Our method is a local one. We
make use of two functions, the partition-of-unity weights and the
local piecewise quadratic approximation functions, which is differ-
ent than the single function used by an RBF approach. This two-
function approach gives benefits such as sharp feature reconstruc-
tion that, to date, have not been possible using RBFs.

Smoothness properties of the MPU implicits are determined by
those of weight functions (3). Choosing smoother weight functions
will produce smoother MPU implicits.

Similar to other implicit function shape representation schemes,
the MPU implicits are not capable of representing correctly surfaces
with boundaries.

We see a number of opportunities to improve our approach.
Other estimation of the distance function might be beneficial. The
distance function is a ruled surface with singularities, therefore us-
ing quadratic functions to approximate the distance function is not
optimal. A richer library of local shape approximations could be
generated in order to reconstruct accurately more complex sharp
features. Finally, the MPU approach should be well suited to an
out-of-core implementation due to the local nature of the weighting
functions.

179

Acknowledgments
The models are courtesy of the Digital Michelangelo Project 3D
Model Repository (Michelangelo’s David and Head of Michelan-
gelo’s David), the Stanford 3D Scanning Repository (Lucy, bunny,
dragon, and Buddha), Cyberware (Igea, fandisk, and vase), Max-
Planck-Institut für Informatik (Head of Max Planck), and the Im-
ager Computer Graphics Laboratory of the University of British
Columbia (knot).

References
ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN, D., AND SILVA,

C. T. 2001. Point set surfaces. In IEEE Visualization 2001, 21–28.

AMENTA, N., BERN, M., AND KAMVYSSELIS, M. 1998. A new Voronoi-based
surface reconstruction algorithm. In Proceedings of ACM SIGGRAPH 1998, 415–
421.

BABUšKA, I., AND MELENK, J. M. 1997. The partition of unity method. Interna-
tional Journal of Numerical Methods in Engineering 40, 727–758.

BABUšKA, CALOZ, G., AND OSBORN, J. E. 1994. Special finite element meth-
ods for a class of second order elliptic problems with rough coefficients. SIAM J.
Numerical Analysis 31, 4, 745–981.

BAJAJ, C. L., BERNARDINI, F., AND XU, G. 1995. Automatic reconstruction of
surfaces and scalar fields from 3D scans. In Proceedings of ACM SIGGRAPH 95,
109–118.

BEATSON, R. K., LIGHT, W. A., AND BILLINGS, S. 2000. Fast solution of the radial
basis function interpolation equations: domain decomposition methods. SIAM J.
Sci. Comput. 22, 5, 1717–1740.

BERNARDINI, F., BAJAJ, C., CHEN, J., AND SCHIKORE, D. 1999. Automatic re-
construction of 3D CAD models from digital scans. International Journal of Com-
putational Geometry & Applications 9, 4, 327–369.

BLINN, J. F. 1982. A generalization of algebraic surface drawing. ACM Transactions
on Graphics 1, 3 (July), 235–256.

BLOOMENTHAL, J., BAJAJ, C., BLINN, J., CANI-GASCUEL, M. P., ROCKWOOD,
A., WYVILL, B., AND WYVILL, G. 1997. Introduction to Implicit Surfaces.
Morgan Kaufmann.

BLOOMENTHAL, J. 1994. An implicit surface polygonizer. In Graphics Gems IV.
324–349.

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL, T. J., FRIGHT, W. R.,
MCCALLUM, B. C., AND EVANS, T. R. 2001. Reconstruction and representation
of 3D objects with radial basis functions. In Proceedings of ACM SIGGRAPH
2001, 67–76.

CURLESS, B. VripPack User’s Guide. http://graphics.stanford.edu/software/vrip/.

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for building complex
models from range images. In Proceedings of ACM SIGGRAPH 1996, 303–312.

DINH, H. Q., SLABAUGH, G., AND TURK, G. 2001. Reconstructing surfaces us-
ing anisotropic basis functions. In International Conference on Computer Vision
(ICCV) 2001, 606–613.

DINH, H. Q., TURK, G., AND SLABAUGH, G. 2002. Reconstructing surfaces by vol-
umetric regularization. IEEE Trans. on Pattern Analysis and Machine Intelligence
24, 10 (October), 1358–1371.

EDELSBRUNNER, H., AND MÜCKE, E. P. 1994. Three-dimensional alpha shapes.
ACM Transactions on Graphics 13, 1 (January), 43–72.

FLEISHMAN, S., COHEN-OR, D., ALEXA, M., AND SILVA, C. T. 2003. Progressive
point set surfaces. ACM Transactions on Graphics 22, 4 (October).

FRANKE, R., AND NIELSON, G. 1980. Smooth interpolation of large sets of scattered
data. International Journal of Numerical Methods in Engineering 15, 1691–1704.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A., AND JONES, T. R. 2000. Adap-
tively sampled distance fields: A general representation of shape for computer
graphics. In Proceedings of ACM SIGGRAPH 2000, 249–254.

GRIEBEL, M., AND SCHWEITZER, M. A. 2000. A Particle-Partition of Unity Method
for the solution of Elliptic, Parabolic and Hyperbolic PDE. SIAM J. Sci. Comp. 22,
3, 853–890.

GRIEBEL, M., AND SCHWEITZER, M. A. 2002. A Particle-Partition of Unity Method
– Part III: A Multilevel Solver. SIAM J. Sci. Comp. 24, 2, 377–409.

HART, J. C. 1996. Sphere tracing: a geometric method for the antialiased ray tracing
of implicit surfaces. The Visual Computer 12, 527–545.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUETZLE, W.
1992. Surface reconstruction from unorganized point. In Proceedings of ACM
SIGGRAPH 1992, 71–78.

HYPERFUN: F-REP LIBRARY. http://cis.k.hosei.ac.jp/ F-rep/HF lib.html.

ISKE, A., AND LEVESLEY, J. 2002. Multilevel scattered data approximation by
adaptive domain decomposition. Tech. rep., University of Leicester, April.

ISKE, A. 2001. Hierarchical scattered data filtering for multilevel interpolation
schemes. In Mathematical methods for curves and surfaces (Oslo, 2000). Van-
derbilt Univ. Press, Nashville, TN, 211–221.

JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. 2002. Dual contouring of
hermite data. ACM Transactions on Graphics 21, 3 (July), 339–346. Proceedings
of ACM SIGGRAPH 2002.

KOBBELT, L. P., BOTSCH, M., SCHWANECKE, U., AND SEIDEL, H.-P. 2001. Fea-
ture sensitive surface extraction from volume data. In Proceedings of ACM SIG-
GRAPH 2001, 57–66.

KOJEKINE, N., HAGIWARA, I., AND SAVCHENKO, V. 2003. Software tools using
CSRBFs for processing scattered data. Computers & Graphics 27, 2 (April).

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D., PEREIRA,
L., GINZTON, M., ANDERSON, S., DAVIS, J., GINSBERG, J., SHADE, J., AND

FULK, D. 2000. The Digital Michelangelo Project: 3D scanning of large statues.
In Proceedings of ACM SIGGRAPH 2000, 131–144.

LIM, C., TURKIYYAH, G. M., GANTER, M. A., AND STORTI, D. W. 1995. Implicit
reconstruction of solids from cloud point sets. In Proceedings of the third ACM
symposium on Solid Modeling and Applications, ACM Press, 393–402.

MOORE, D., AND WARREN, J. 1991. Approximation of dense scattered data using
algebraic surfaces. In Proceedings of the 24th Hawaii International Conference on
System Sciences, IEEE Computer Society Press, Kauai, Hawaii, 681–690.

MORSE, B. S., YOO, T. S., RHEINGANS, P., CHEN, D. T., AND SUBRAMANIAN,
K. R. 2001. Interpolating implicit surfaces from scattered surface data using com-
pactly supported radial basis functions. In Shape Modeling International 2001,
89–98.

MURAKI, S. 1991. Volumetric shape description of range data using “Blobby Model”.
Computer Graphics 25, 4 (July), 227–235. Proceedings of ACM SIGGRAPH 1991.

OHTAKE, Y., AND BELYAEV, A. G. 2002. Dual/primal mesh optimization for poly-
gonized implicit surfaces. In 7th ACM Symposium on Solid Modeling and Applica-
tions, 171–178.

OHTAKE, Y., BELYAEV, A. G., AND SEIDEL, H.-P. 2003. A multi-scale approach to
3D scattered data interpolation with compactly supported basis functions. In Shape
Modeling International 2003. Accepted.

PASKO, A., AND SAVCHENKO, V. 1994. Blending operations for the functionally
based constructive geometry. In Set-theoretic Solid Modeling: Techniques and
Applications, CSG 94 Conference Proceedings, Information Geometers, 151–161.

RENKA, R. J. 1988. Multivariate interpolation of large sets of scattered data. ACM
Transactions on Mathematical Software 14, 2 (June), 139–148.

RICCI, A. 1973. A constructive geometry for computer graphics. The Computer
Journal 16, 2 (May), 157–160.

SAVCHENKO, V. V., PASKO, A. A., OKUNEV, O. G., AND KUNII, T. L. 1995.
Function representation of solids reconstructed from scattered surface points and
contours. Computer Graphics Forum 14, 4, 181–188.

SCHABACK, R., AND WENDLAND, H. 2000. Adaptive greedy techniques for approx-
imate solution of large RBF systems. Numerical Algorithms 24, 239–254.

TAUBIN, G. 1991. Estimation of planar curves, surfaces and nonplanar space curves
defined by implicit equations, with applications to edge and range image segmenta-
tion. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 11, 1115–1138.

TURK, G., AND LEVOY, M. 1994. Zippered polygon meshes from range images. In
Proceedings of ACM SIGGRAPH 1994, 311–318.

TURK, G., AND O’BRIEN, J. 2002. Modelling with implicit surfaces that interpolate.
ACM Transactions on Graphics 21, 4 (October), 855–873.

WARREN, J. 1992. Free-form blending: a technique for creating piecewise implicit
surfaces. In Topics in Surface Modeling, H. Hagen, Ed. SIAM Press, Philadelphia,
473–483.

WENDLAND, H. 2002. Fast evaluation of radial basis functions: Methods based on
partition of unity. In Approximation Theory X: Wavelets, Splines, and Applications,
Vanderbilt University Press, Nashville, L. Schumaker and J. Stöckler, Eds., 473–
483.

ZHAO, H., AND OSHER, S. 2002. Visualization, analysis and shape reconstruction
of unorganized data sets. In Geometric Level Set Methods in Imaging, Vision and
Graphics, Springer, S. Osher and N. Paragios, Eds.

180

Interpolating and Approximating

Implicit Surfaces from

Polygon Soup

Chen Shen

James F. O’Brien

Jonathan R. Shewchuk

University of California, Berkeley

Introduction

Implicit SurfacePolygonal Original

181

Introduction

Approximating
Surfaces

Applications

• Repairing defective polygonal models

– Holes, gaps, T-junctions, self-intersections, non-

manifold structures

• Testing interior/exterior points

• Preprocessing for rapid prototyping
machine

• Generating simulation envelopes

182

Background

• Implicit Partition-of-Unity
– Ohtake et al., 2003

• Moving Least Square projection method
– Alexa et al., 2001, 2003, Fleishman et al., 2003,

Amenta et al., 2004

• Other implicit techniques

• Other model fixing/smoothing methods

More detailed discussion in paper…

Moving Least Square Basics

• Standard Least Square (“stationary”)

183

Moving Least Square Basics

• Standard Least Square (“stationary”)

Moving Least Square Basics

• Moving Least Square

184

Moving Least Square Basics

• Moving Least Square

Moving Least Square Basics

• Least Square • Moving Least Square

Interpolating

Approximating

185

Primary Innovations

• Implicit Moving Least Squares (IMLS)

• True normal constraints
– No undesirable oscillatory behavior

• Integrated constraints over polygons
– Avoids dimples and bumps

• Adjustment procedure
– Tightly fit, completely enclosed

• Hierarchical fast evaluation

Implicit MLS

Sample
Points

186

Inside

Implicit MLS

Sample
Points

+

Outside-

Implicit MLS

Implicit
Function

Inside

Sample
Points

+

Outside-

187

Implicit MLS

Implicit
Function

Contour
at Zero

Inside

Sample
Points

+

Outside-

Normal Constraints

• Problems with pseudo-normal constraints

188

True Normal

True Normal

189

True Normal

Normal

Sample
Points

Normal
vectors

190

Normal

Implicit
Function

Sample
Points

Normal
vectors

Normal

Implicit
Function

Contour
at Zero

Sample
Points

Normal
vectors

191

Normal Constraints

• No undesirable oscillations

Our
method

Extended
view

Compare

Point Constraints Normal Constraints

192

Integrated over Polygons

Fine Super Fine

Scattered point constraints

Integrated polygon
constraints (new method)

Integrated over Polygons

V 0

V 2V 1

• Scattered points constraints

193

Integrated over Polygons

V 0

V 2V 1

• Integral constraints

Integrated over Polygons

• Polygons constraints

V 0

V 2V 1

194

Adjustment Procedure

• Naive approximation

Adjustment Procedure

• Iterative adjustment

195

Fast Evaluation

Fast Evaluation

196

Fast Evaluation

Fast Evaluation

K-d tree averaging

197

Fast Evaluation

Fast Evaluation

198

Results

Approximating
Surfaces

Results

199

200

Results

Results

201

Results

• Rapid prototyping

Results

• Building simulation envelope

202

Acknowledgements

• All members of Berkeley Graphics Group

• Ravi Kolluri for Polygonization

• Okan Arikan for Pixie

• Adam Bargteil for Simulation

• Prof. Carlo Sequin for FDM machine

• NSF CCR-0204377, MICRO 02-055, Pixar,
Intel, Sony, Okawa Foundation and Alfred
Sloan Foundation

203

Computer Graphics Proceedings, Annual Conference Series, 2004

Interpolating and Approximating Implicit Surfaces from Polygon Soup

Chen Shen James F. O’Brien Jonathan R. Shewchuk

University of California, Berkeley

Abstract

This paper describes a method for building interpolating or
approximating implicit surfaces from polygonal data. The
user can choose to generate a surface that exactly interpo-
lates the polygons, or a surface that approximates the input
by smoothing away features smaller than some user-specified
size. The implicit functions are represented using a moving
least-squares formulation with constraints integrated over
the polygons. The paper also presents an improved method
for enforcing normal constraints and an iterative procedure
for ensuring that the implicit surface tightly encloses the
input vertices.

Keywords: Implicit surfaces, polygon soup, physically
based animation, surface smoothing, topological simplifica-
tion, simulation envelopes, point-based surfaces, surface rep-
resentation, surface reconstruction.

CR Categories: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface,
solid, and object representations; G.1.2 [Numerical Analy-
sis]: Approximation—Approximation of surfaces and con-
tours.

1 Introduction

Polygonal models occur ubiquitously in graphics applica-
tions. They are easy to render, easy to compute with, and a
vast array of tools have been developed for creating and ma-
nipulating polygon data. Unfortunately, polygonal data sets
often contain problems, such as holes, gaps, t-junctions, self-
intersections, and non-manifold structure, that make them
unsuitable for many purposes other than rendering. Even
when a polygonal data set does define a closed, manifold
surface, other difficulties such as excessive detail or bad-
aspect-ratio polygons, can preclude many uses. Data sets
containing these problems are so common that the term
“polygon soup” has evolved for describing arbitrary collec-
tions of polygons that carry no warranties concerning their
structure.

This paper provides a tool that can transform arbitrary
polygon data into a more useful form. We address this task
with a method for generating implicit surfaces that can inter-
polate or approximate a set of polygons. The user controls
how closely the surface approximates the input by selecting
a minimum feature size. Geometric details or topological
structures below this size tend to be smoothed away. Setting
the minimum feature size to zero forces exact interpolation
of the polygons. Additionally, if desired, we can cause an ap-
proximating surface to fit tightly around the input polygons

E-mail: {csh,job,jrs}@eecs.berkeley.edu

From the ACM SIGGRAPH 2004 conference proceedings.
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee.
ACM SIGGRAPH 2004, Los Angels, CA
c© Copyright ACM 2004

Figure 1: Interpolating and approximating surfaces (green)
generated from polygonal original (brown).

while still ensuring that the input vertices are completely
enclosed by the implicit surface. Figure 1 shows interpo-
lating and approximating surfaces genrated from a complex
polygonal model with sharp edges and many small features.

An interpolating surface will exactly interpolate the in-
put polygons, but it will also extend to fill gaps and holes so
that the resulting surface will be “watertight.” This implicit
function can then be used directly for a variety of applica-
tions, such as inside-outside tests, that are better suited to
implicit representations. Alternatively, a clean polygonal
model can be extracted and used for applications that re-
quire such clean polygonal input.

Approximating surfaces will naturally smooth out geo-
metric features of the input data. Because we are using an
implicit representation, topological structures of the input
surfaces can also be smoothed away. This behavior makes
the method suitable as part of a model simplification pro-
cess when combined with an appropriate polygonization al-
gorithm.

We can also force the approximating surface to stay
“tight” around the original polygons while still smooth-

1
204

ACM SIGGRAPH 2004, Los Angels, CA, August, 8–12, 2004

ing away details and ensuring that all the original vertices
fall inside the approximating surface. This capacity allows
us to generate a family of increasingly smooth approxima-
tions that eventually converge to a circumscribing ellipsoid.
Among other uses, these simplified shapes can be used for
easily generating efficient simulation envelopes.

Our algorithm makes use of a scattered-data interpola-
tion method known as moving least-squares, commonly ab-
breviated MLS. The function defining our implicit surfaces
is specified by the moving least-squares solution to a set of
constraints that would force the function to a given value
over the surface region of each polygon, and that would over
the same region also force the function’s upward gradient to
match the polygon’s outward normal. Neither condition is
specified by simple point constraints: integrated constraints
are used over each polygon, and normals constraints directly
affect the function’s gradient. The degree of approximation
is controlled by simply adjusting the least-squares weighting
function, but the tightness of the surface and the require-
ment that the input vertices fall inside the implicit surface
both depend on an iterative procedure for adjusting the con-
straint values over each polygon.

The moving least-squares method has been used by other
researchers to define a surface as the fixed-point of an itera-
tive parametric fit procedure—for example, see [Alexa et al.,
2001]. Other than using the same general mathematical tool,
that approach and this one are unrelated. Unfortunately,
those surfaces are often referred to simply as MLS Surfaces
which may cause some confusion with the method described
here. We suggest that the term implicit moving least-squares
surface, or IMLS Surface be used to describe our method.

Our approach is, however, closely related to implicit meth-
ods based on partition-of-unity interpolants. (For example
see [Ohtake et al., 2003a].) Partition-of-unity and moving
least-squares interpolants use different notation, but they
are fundamentally alike. One key difference between our
formulation and prior ones is that our integrated constraints
differ significantly from collections of point constraints. We
also use improved normal and approximation procedures,
which are applicable to point constraints as well as to our
integrated constraints.

Our algorithm has five primary components:

• A scattered data interpolation scheme that, in addi-
tion to simple point constraints, allows integrated con-
straints over polygons.

• A method for enforcing true normal constraints that
does not produce undesirable oscillatory behavior.

• An adjustment procedure that causes the implicit sur-
face to fit tightly around the input polygons while still
ensuring that the input vertices are completely enclosed
by the implicit surface.

• A hierarchical fast evaluation scheme that makes the
method practical for large data sets.

• Optional preprocessing to remove unwanted geometry
and enforce consistency among the input normals.

2 Background

The work most closely related to ours appears in [Ohtake
et al., 2003a]. They use a partition-of-unity method to
build a function whose zero-set passes through, or near, a
set of input points. Using a procedure originally proposed
by [Turk and O’Brien, 1999], they place zero-constraints at
each input point, and they also place a pair of additional
non-zero point constraints offset in the inward and outward
normal directions. To keep the method feasible for large
data sets, they use a fast hierarchical evaluation scheme.
The partition-of-unity formulation they use and the moving
least-squares formulation that we start with are essentially

identical: they both belong to a family of meshless interpo-
lation methods that also includes the element-free Galerkin
method and smoothed particle hydrodynamics. We refer the
reader to [Belytschko et al., 1996] for a discussion of the re-
lationships between these different formulations. The two
most significant differences between our work and [Ohtake
et al., 2003a] are that we use integrated polygon constraints,
and that we use a significantly improved method for enforc-
ing normal constraints. We also describe a different hierar-
chical evaluation scheme and an iterative method for gener-
ating useful approximating surfaces.

Moving least-squares interpolation is also a part of the
non-linear projection method used in [Alexa et al., 2001],
[Alexa et al., 2003], and [Fleishman et al., 2003]. This pro-
jection method defines a surface as a function of a set of
points, but the moving least-squares fit is used as part of
a non-linear projection that differs substantially from the
implicit-surface based method described here.

The technique of defining a surface implicitly using a func-
tion constrained to match a set of input points is fairly
widespread. In [Savchenko et al., 1995], [Turk and O’Brien,
1999], [Carr et al., 2001], and [Turk and O’Brien, 2002]
the function is represented using globally supported radial
splines. This class of functions has the nice property that
one can make definite statements about a solution’s global
behavior. These radial splines have also been used to match
polygon data by [Yngve and Turk, 2002]. While they were
able to achieve results that roughly matched the input poly-
gons, the resulting implicit surfaces still deviated substan-
tially from the input. Different, locally supported func-
tions were used in both [Muraki, 1991], [Morse et al., 2001],
and [Ohtake et al., 2003b] for fitting an implicit surface to
clouds of point data. In addition to representing function
as sums of continuous basis functions, [Museth et al., 2002]
and [Zhao et al., 2001] have used level-set methods for fitting
surfaces to point clouds. Other function representations in-
clude signed-distance functions [Cohen-Or et al., 1998], and
medial axes [Bittar et al., 1995]. The text, [Bloomenthal,
1997], also describes several other methods for representing
implicit surfaces.

Some of the applications that can be addressed with our
method have also been addressed with other methods. An
enormous amount of work has been done on smoothing ex-
plicit representations of polygonal models, two early exam-
ples of which include [Taubin, 1995] and [Desbrun et al.,
1999]. Work in that subarea is now quite advanced and
methods are available that can preserve sharp features while
still smoothing away noise. (For a single recent example,
see [Jones et al., 2003].) We can also generate envelopes
around input objects and similar ideas have been explored
in [Cohen et al., 1996] and [Keren and Gotsman, 1998]. The
problem of rectifying polygonal models has been investigated
in [Nooruddin and Turk, 2003]. In [Nooruddin and Turk,
2000] the same researchers also looked at methods for re-
moving unwanted interior structure from a polygon model.

3 Methods

The primary tool we work with is a scattered data inter-
polation method known as moving least-squares. With this
method we can create an implicit surface that either inter-
polates or approximates a given polygonal surface. In this
section, we describe how we set up and apply constraints
that allow us to generate and control the behavior of the
implicit surface.

For the sake of clear exposition, we will start by describ-
ing a moving least-squares method for defining implicit sur-
faces using simple point constraints. We will then describe
how that method can be extended to include integrated con-
straints defined over polygonal regions. Once we specify the

2
205

Computer Graphics Proceedings, Annual Conference Series, 2004

framework we use for defining our functions, we will describe
how we enforce normal constraints, adjust the tightness of
the surface around the input, and preprocess the data to
avoid unwanted internal structures.

During our discussion of the implicit moving-least squares
formulation, we keep the description of basis and weighting
functions general. However, although our implementation
supports a wide range of function choices, we have found
that simple weighting functions and constant basis functions
are computationally inexpensive, yet they produce results
just as good as more expensive choices. For other problems,
different choices of weighting and basis functions may be
useful.

3.1 Value Constraints at Points

Assume that we have N points located at positions pi, i ∈
[1 . . . N], and we would like to build a function, f(x), that
approximates the values φi at those points. For a standard
least-squares fit we would solve bT(p1)

...
bT(pN)

 c =

 φ1

...
φN

 , (1)

where b(x) is the vector of basis functions we use for the
fit, and c is the unknown vector of coefficients. Unless this
system is under-constrained, it can be resolved efficiently
using the method of normal equations and solving an M×M
linear system, where M is the number of basis functions
(i.e., the lengths of b and c). For example, if we wished
to fit a plane we would choose b(x) = [1, x, y, z], or simply
b(x) = [1] if we just wished to fit a constant. The resulting
function is

f(x) = bT(x) c . (2)

For the moving least-squares formulation, we allow the fit
to change depending on where we evaluate the function so
that c varies with x. We do so by weighting each row of
Equation (1) by w(‖x − pi‖), where w(r) is some distance
weighting function, which gives us w(x,p1)

. . .
w(x,pN)

 bT(p1)
...

bT(pN)

 c =

 w(x,p1)
. . .
w(x,pN)

 φ1

...
φN


(3)

where w(x,pi) = w(‖x− pi‖).
By selecting an appropriate weight function, a variety of

interpolating or approximating behaviors can be achieved,
even with low-order basis functions. In general, a weight
function that approaches +∞ at zero will cause interpola-
tion. We use the weight function

w(r) =
1

(r2 + ε2)
. (4)

The parameter ε allows a degree of control over the function’s
behavior which we discuss later.

Giving matrices names and explicitly noting their depen-
dence on x, Equation (3) becomes

W (x) B c(x) = W (x) φ . (5)

The resulting normal equations are

BT (W (x))2 B c(x) = BT (W (x))2 φ (6)

and we can evaluate the fit function’s value using

f(x) = bT(x) H−1 BT (W (x))2 φ , (7)

Figure 2: The column on the left shows the results gener-
ated using integrated polygonal constraints. The middle and right
columns show the results generated with different densities of scat-
tered point constraints.

m v−

v+

0 1αα2αn

x x x

m m m.

.

Figure 3: The quadrature scheme used over a triangle.

where
H = BT (W (x))2 B . (8)

The derivatives with respect to x of the fit function can be
evaluated using

f ′(x) = (bT)′(x) H−1 BT (W (x))2 φ −
bT(x) H−1H ′H−1 BT (W (x))2 φ +

bT(x) H−1 BT ((W (x))2)′ φ ,

(9)

where
H ′ = BT ((W (x))2)′ B , (10)

and the derivative of (W (x))2 is obtained by simply taking
the derivative of the squared weighting function along the
matrix’s diagonal.

3.2 Value Constraints Integrated over Polygons

Although the formulation in the previous section works well
for point constraints, the input data we are concerned with
consists of polygons, and for each of these polygons we want
to constrain the fit function over its entire surface. If we
were not interested in interpolating the polygons, we could
approximate the desired effect with point constraints scat-
tered over the surface of each polygon. Aside from poten-
tially requiring a very large number of points, scattered point
constraints work reasonably well for approximating surfaces.
However, interpolating surfaces and surfaces that approx-
imate closely show undesirable bumps and dimples corre-
sponding to the point locations. (See Figure 2.) In particu-
lar, bumps and dimples occur unless ε is substantially larger
than the spacing between points.

To achieve good results, what we would like to do is to
scatter an infinite number of points continuously across the
surface of each polygon. Notice that Equation (6) can be
rewritten as an explicit summation over a set of point con-
straints,(

N∑
i=1

w2(x,pi) b(pi) bT(pi)

)
c(x) =

N∑
i=1

w2(x,pi) b(pi)φi

(11)
In this form it becomes clear how we can apply constraints
continuously over each polygon’s surface.

For a data set of K polygons, let Ωk, k ∈ [1 . . .K], be the
kth input polygon. The parenthesized term of Equation (11)

3
206

ACM SIGGRAPH 2004, Los Angels, CA, August, 8–12, 2004

and the term on the right are replaced by integrals over the
polygons and we have(

K∑
k=1

Ak

)
c(x) =

K∑
k=1

ak (12)

where Ak and ak are defined by

Ak =

∫
Ωk

w2(x,p) b(p) bT(p) dp , (13)

ak =

∫
Ωk

w2(x,p) b(p)φk dp , (14)

p is the integration variable ranging over the polygon, and
φk is the constraint value. We can choose φk to be constant,
or we can choose φk to vary polynomially over each poly-
gon. For later use, it is convenient to define terms with the
weighting function omitted:

Ãk =

∫
Ωk

b(p) bT(p) dp , (15)

ãk =

∫
Ωk

b(p)φk dp . (16)

The integrals will be infinite when ε = 0 and the eval-
uation point x lies precisely on a polygon. In this case,
f(x) has a removable singularity at x; we can skip the least-
squares step and simply set f(x) to the value φk dictated by
the polygon. It is possible that two polygons intersect at a
point where their constraints disagree, in which case f has
an essential singularity at that point. Evaluating at or near
such points in a numerically stable fashion is difficult. How-
ever, we can sidestep the issue by setting ε to an extremely
small number, far below the smallest feature size relevant to
a given application.

Computing these integrals is conceptually straightfor-
ward. Each entry of the matrix b bT and the vector b is
a polynomial in p, the weight function we have chosen is
a rational polynomial in p, and each of the components of
the matrices can, of course, be computed independently. For
a one-dimensional integral (i.e., constraints over edges) the
integrals have closed form solutions. (See Appendix A.) Un-
fortunately, we have not been able to find closed-form solu-
tions of the two-dimensional integrals.

The obvious solution to this problem would simply
approximate the integrals using a standard quadrature
method. Unfortunately, this solution performs poorly for the
same reason that scattering point constraints does: unless
the distance between quadrature points is significantly less
than ε the resulting surface will have dimples and bumps.
The culprit responsible for this behavior is the weighting
function. Its singularity, or near singularity, at zero, causes
severe problems for standard quadrature schemes. These dif-
ficulties extend to Monte-Carlo schemes, which explains the
problems encountered with scattered points. The method
we use is aware of the singular nature of the weighting func-
tion and it accounts for that contribution without under-
weighting the contribution from the rest of the triangle.

Let m be the point in Ωk that is closest to the evaluation
point, x. (See Figure 3.) If this point is on the interior of
Ωk, we split the triangle into three triangles each of which
has m as one of its vertices. If the point lies on an edge,
the triangle is split into two triangles. If the point lies on an
existing vertex, the triangle is not split. The integral over
the original triangle is the sum of integrals over each of these
sub-triangles. Each sub-triangle has m as one of its vertices,

and the other two vertices are denoted v+ and v− such that
w(x,v+) ≥ w(x,v−).

To compute the sub-triangle area integral we separate
it into two successive one-dimensional integrals as shown
in Figure 3. The outer one integrates along the edge from m
to v− using a special numerical quadrature rule. The inner
one integrates along the barycentric iso-lines that are par-
allel to the edge from m to v+, using the one-dimensional
analytical solution.

The outer, numerical integration uses the Newton-Cotes
trapezoidal rule with irregularly spaced samples. If the edge
from m to v− is parameterized from zero to one with zero
corresponding to m, the samples occur at 0, αn, . . . , α1, α0.
We arbitrarily use α = 2/3, and n is proportional to the
logarithm of the edge length. The integral should be ap-
propriately scaled by the sub-triangle area. This scheme
captures the behavor near the potentially singular location,
m, without neglecting the rest of the triangle.

3.3 Normal Constraints

The two previous sections describe how we can implement
constraints on the value of the moving least-squares func-
tion at discrete points and over polygonal patches. How-
ever, if we attempt to define a surface by only requiring it
to take a given value on its surface, we will not obtain use-
ful results. Previous researchers, for example [Ohtake et al.,
2003a], have implemented pseudo-normal constraints with a
technique originally suggested by [Turk and O’Brien, 1999].
This technique places a zero constraint at a point on the sur-
face, a positive constraint offset sightly outside the surface,
and a negative one slightly inside.

Unfortunately, this approach does not work as well as one
might like. The additional constraints influence the func-
tion’s gradient only crudely, and they can cause undesirable
oscillatory behavior as the evaluation point moves away from
the surface. This behavior is illustrated in the lower half
of Figure 4. It occurs because when the distance between
the evaluation point and the surface point is much larger
than the offset distance, the inside and outside constraints
effectively cancel each other out. Even if only outside (or
only inside) constraints are used, they will still effectively
merge to a single average valued constraint far away. Heuris-
tics, such as those described by [Ohtake et al., 2003a], can
suppress some of the spurious behavior, but the value of the
function far from the surface will not be useful. Further-
more, these quasi-normal constraints cause severe problems
when used with the approximation procedure described in
the next section.

Figure 4: A one-dimensional example showing the height field
generated from four position and normal constraints. The first
(top) image shows the result with our method, and the arrows
indicate the outward normal directions. The second shows an
expanded view demonstrating far-field behavior. The third and
fourth images show the results generated by pseudo-normal con-
straints with linear and quadratic basis functions. The small dots
indicate the placement of the inside and outside pseudo-normal
constraints.

4
207

Computer Graphics Proceedings, Annual Conference Series, 2004

Figure 5: A two-dimensional example comparing interpolating
and approximating results. The center images show input con-
straints as dotted lines and the contour as a solid line. The outer
images show the resulting function as a height-field.

One of our key innovations is to impose normal constraints
by forcing the interpolating function to behave like a pre-
scribed function (in the neighborhood of a polygon), as op-
posed to a prescribed constant value. In other words, instead
of using the moving least-squares method to blend between
constant values associated with each polygon (or point), we
blend between functions associated with them. This method
exhibits little undesirable oscillation.

If n̂k is the normal associated with polygon Ωk, we define
the function Sk(x) that describes how that polygon wants
the interpolant to behave as

Sk(x) = φk + (x− qk)T n̂k (17)

= ψ0k + ψxk x+ ψyk y + ψzk z , (18)

where qk is an arbitrary point on the polygon Ωk, and ψ0k,
ψxk, ψyk, and ψzk are resulting polynomial coefficients. In-
terpolating between these functions reduces to simply inter-
polating the ψ coefficients just as we would normally inter-
polate a constant value φk.

In the special case where n̂k = 0, the normal constraints
are exactly equivalent to the original value constraints. As
a result we can easily mix constraints with and without nor-
mals.

In the case where we only use the constant basis function,
so that b(x) = [1], the fit from Equation (5) simplifies to w(x,p1)

...
w(x,pi)

 c1 =

 w(x,p1)
. . .
w(x,pN)

  S1(x)
...

SN (x)

 (19)

which has the very intuitive interpretation that the interpo-
lating function’s value at x is simply the weighted average
of the values at x predicted by each of the Sk(x).

We have found this approach to work well. Figure 4 illus-
trates that the undesirable behavior that occurs with quasi-
normal constraints does not occur with this method. Fur-
ther, this approach causes the surface normals to actually
take on the desired value at constraint points, whereas offset
constraints do not. For polygonal constraints, the normals
are interpolated so long as they are consistent with the poly-
gon’s plane. In addition to being useful with moving least-
squares, this normal constraint approach should also work
with other interpolation methods such as the radial splines
used in [Turk and O’Brien, 1999]. Because the magnitude of
the normal constraint grows linearly as the evaluation point
moves away, we must choose a weighting function that falls
off faster than linearly.

3.4 Interpolation and Approximation

When the weighting function parameter, ε, is set to zero, the
moving least-squares function will exactly interpolate con-
straint values. If we follow the general approach described

Figure 6: The first (top) row shows the result of applying
our iterative adjustment algorithm with different values of ε to
a polygonal scorpion model. The second row shows the original
and constructed surfaces together. The third row shows the re-
sult of only adjusting the surface to average values (no iterative
adjustment). The fourth row shows the result generated when no
correction is applied.

in [Turk and O’Brien, 1999] and [Ohtake et al., 2003a] of
constraining the function to be zero at input points or poly-
gons, supplying appropriate normal constraints, and extract-
ing the iso-surface f(x) = 0, then all the input polygons will
be parts of the resulting implicit surface.

If the polygonal surface contains gaps or holes, then the
implicit surface will extend beyond the input polygons to
generate a closed surface. As with previous methods that
accomplish hole filling using some form of implicit surface,
there is no guarantee that the results will satisfy any particu-
lar criteria. However, we generally find that these extensions
close gaps and holes in a useful fashion that produces results
simular to what a human might have selected.

If the polygon surface self-intersects, then the interpolat-
ing surface will have some form of saddle at the intersections.
This behavior is illustrated for a two-dimensional example
in Figure 5.

When ε is set to a non-zero value the weighting function
is no longer singular at zero, and the moving least-squares
function interpolates constraint values only approximately.
Examination of Equation (4) reveals that ε has the same
units as distance. It corresponds to a feature size parameter:
structures smaller than ε tend to be smoothed away by the
approximation.

While generating an approximate surface by simply set-
ting ε to some non-zero value works well to a limited extent,
it suffers from two problems. The first is that as epsilon is
set to larger values, the approximating surface has the ten-
dency to move away from the input data (Figure 6, bottom
row). For example, very large values of ε will smooth an
object to a simple sphere-like shape, but the sphere radius
may be several times the original object’s circumradius. The
second problem is that we cannot ensure that all the object’s
original vertices fall inside the implicit surface, and for some
applications this guarantee is important.

To correct the first problem we simply build a moving
least-squares function with the desired ε, sample its average
value over the input polygons, and then extract a surface at
that iso-value (Figure 6, third row). Although this procedure
may at first appear to require substantial extra work, the
additional work is actually not particularly significant. The
majority of computation is spent extracting the iso-surface,
and that task still only needs to be done once.

5
208

ACM SIGGRAPH 2004, Los Angels, CA, August, 8–12, 2004

By adjusting the iso-value we achieve a surface that, on
average, stays close to the input data, but with this con-
struction we expect that roughly half the original vertices
will fall outside the surface. To ensure that original ver-
tices lie inside the surface, we iteratively adjust the φ values
assigned to the vertices.

Initially, the φ values associated with each vertex are all
zero and the φ associated with each triangle is the constant
zero as well. If a vertex, v, protrudes outside the iso-surface
(i.e., f(v) > 0), we adjust its φ value by −γ f(v) where γ is
an adjustment rate parameter between zero and one (typi-
cally close to one). Once the vertices of a triangle have been
assigned different values, we linearly interpolate φ over the
triangle when computing integrals. This adjustment process
is done iteratively until no original vertex falls outside the
iso-surface. The final surface is guaranteed to enclose all in-
put vertices, as illustrated in the top two rows of Figure 6.
As with adjusting the iso-value, the majority of computa-
tion is still spent extracting the iso-surface, and that task
still only needs to be done once.

Variations on this iterative procedure for adjusting the φ
values could also be used to enforce other conditions. For
example, it could be used to guarantee that all points are
within some set distance of the iso-surface. Conditions could
be tested at points other than the initial vertices, and the
iterative procedure could also adjust the normal direction or
magnitude associated with each constraint.

3.5 Fast Evaluation

Näıve implementation of the moving least-squares function
would require work linear in the number of constraints for
each function evaluation. For large data sets, this näıve ap-
proach is completely infeasible. A similar problem arises
with the partition-of-unity method used in [Ohtake et al.,
2003a]. They address the problem using a hierarchical
evaluation scheme that caches approximations based on lo-
cal neighborhoods. Because partition-of-unity and moving
least-squares methods are essentially equivalent methods,
their hierarchical evaluation scheme could be used with our
method as well. We have, however, implemented a different
evaluation scheme which we describe briefly.

We observe that the primary expense for evaluating the
moving least-squares function is the cost of computing the
sums and integrals for Equation (12). Were it not for the
weighting function’s dependence on x, the terms would be
constant and the summation would only need to be com-
puted once.

For terms that peak near the evaluation point, the weight-
ing function changes rapidly. However, the weight function
changes only slowly for far terms. We can approximate
groups of the slowly changing far terms by first summing
them and then multiplying by their average weight.

For our hierarchical scheme, we first store the input tri-
angles in a K-D tree where each triangle is stored at one
of the leaf nodes. We then compute the unweighted inte-
grals, Equations (15) and (16), for each triangle and store
them, along with the triangle’s axis-aligned bounding box,
in the leaf nodes. The interior nodes store the unweighted
sums of their children’s integrals/sums, and a bounding box
that encloses the union of their children’s bounds. We also
store an area-weighted “center of mass” for each node.

To evaluate the contribution of a subtree, we test the eval-
uation point to see if it falls outside the subtree’s bounding
box by a distance greater than λ times the box’s diame-
ter. If it does, we use the sums stored at the subtree’s root
node with a weight computed using the distance between the
node’s center of mass and the evaluation point. If the evalu-
ation point is not sufficiently distant, we recursively test the
node’s children. Only when we find that a leaf node fails our

Figure 7: The top left image shows a polygonized version the
Utah teapot which contains holes (around lid and tip of spout),
and intersecting parts (handle and spout with body). The top
right image is a near-interpolating surface which fills the holes
and removes intersecting surfaces. The bottom row contains pho-
tographs of physical models built on a fused deposition machine.
The bottom right image shows a physical cutaway model.

distance test do we need to compute the weighted integral
terms for that node.

This scheme was easy to implement using existing K-D
tree collision detection code, and it allows us to work with
models consisting of several hundred thousand triangles.
The user can make a trade-off between speed and accuracy
by adjusting λ. Our examples were generated with λ be-
tween 0.01 (when ε = 0) and 0.1 (when ε is large).

3.6 Preprocessing

Although the methods we have described in previous sections
cope reasonably well with intersecting geometry and layers of
internal structure, it may still be useful to first remove some
of these polygons. In particular, our algorithm will happily
produce surfaces corresponding to internal structures, even
if only an exterior shell was desired. In these cases, we can
pre-process the input to remove polygons that are not visible
from the exterior using methods such as those in [Nooruddin
and Turk, 2003] and [Nooruddin and Turk, 2000].

The normal constraints depend on consistently oriented
normals. Unfortunately, many polygon models may have
normals that randomly point inward or outward. We force
normals on topological surfaces to point in a consistent di-
rection. We also orient the normals of any exterior-visible
polygon to point outward. If both sides of a triangle are
exterior-visible then we set that triangle’s normal to zero.

4 Results and Discussion

Figures 1, 10 and 11 show the result of applying our algo-
rithm to a variety of models using different values of ε. An-
imations showing continuous variation of ε from interpolat-
ing to extreme smoothing appear on the proceedings DVD.
Most of these models contain holes, self-intersections, non-
manifold structure, and other defects. The objects in brown
are the original polygonal models. Green objects are out-
put from our algorithm. For sufficiently large ε, all objects
converge to a circumscribing ellipsoid-like shape. As Fig-
ure 8 shows, the interpolating surfaces can reproduce small
features and sharp edges.

As Figure 7 shows, we can use this algorithm as an effec-
tive preprocessor before sending a model to a rapid pro-
totyping machine. The Utah teapot contains holes and
self-intersections that would cause the machine to produce
garbage output. A tightly approximating implicit surface
does not contain those problems and allows a successful

6
209

Computer Graphics Proceedings, Annual Conference Series, 2004

Model Fig. P. In ε V. Out Time ε V. Out Time ε V. Out Time ε V. Out Time

Heavy Loader 1 37 0 2000 11:42 0.05 800 64:06 5 62 72:48 30 30 92:34

Teapot 10 6.3 0 1000 5:50 0.8 300 10:28 10 53 22:02 60 26 42:31

Cow 10 5.8 0 1000 5:37 0.8 300 8:04 7 61 23:35 120 23 58:19

Bunny 10 69 0 1500 8:13 0.4 400 19:34 10 50 41:36 60 28 72:23

Dragon 10 870 0 2000 12:23 0.6 400 82:21 7 46 89:54 30 21 97:04

Scorpion 10 78 0 1500 9:54 0.6 400 67:50 5 65 61:06 30 26 80:55

Intersecting Star 11 0.05 0 1000 4:44 1 300 5:18 10 48 7:03 110 28 8:20

Machine Part 11 0.8 0 1000 4:45 0.8 300 5:54 7 60 8:50 120 29 20:21

Deck Chair 11 3.9 0 1000 5:01 0.8 300 8:29 10 55 27:06 120 30 52:36

Armchair 11 3.4 0 1000 4:56 0.4 300 7:53 7 62 28:28 120 28 41:09

Cube Shape 11 0.01 0 1000 4:44 0.8 300 5:01 10 45 3:06 80 25 1:52

Table 1: This table lists the computation times and ε parameter for the examples used in this paper. The columns P. In and V. Out
list the number (in thousands) of polygons in the input model and the number (in thousands) of vertices in the output surface. We
measure ε in thousandths of the diagonal length of the object’s bounding box. Computation times (minutes:seconds) measure total time
on a 3 GHz P4 beginning with reading the input model and ending with writing the polygonized output surface. Column groups match
the ε values used for the examples shown in the figures.

Figure 8: The far-left image shows a closeup view of the original
polygons for the heavy-loader’s back grill. The center-left image
shows the resulting interpolating surface, and the center-right a
slightly approximating one. The far-right image shows a rear
view of the interpolating surface for the entire loader. The dented
appearance near sharp edges is a polygonization artifact.

Figure 9: The heavy-loader shown top left contains many defects
that make it unsuitable for simulation as a deformable object.
The approximating surface, top center, fully encloses the original
model. The tetrahedral finite-element model, top right, can be
used as a simulation envelope to model the effect of an impact,
lower left and lower right.

build. Additionally, because building a solid teapot would
waste material, it is desirable to include an inner surface.
We generated the inner surface of the cutaway teapot by
taking the same MLS function used to create the outer sur-
face and computing another iso-surface for a lower iso-value.
These photographs demonstrate that our method produces
surfaces that can be used to generate structurally sound
physical models.

Deformable object simulations based on the finite element
method have found widespread use in video games and film
production. Unfortunately, self-intersections, topological in-
consistencies, holes, and triangles with bad aspect ratios ren-
der most graphics models ill-suited for use as a finite element
mesh. Even meshes that are free of these problems may con-
tain far too many elements to be practical for simulation.
We can still animate these objects by embedding them in

a suitable, enclosing, deformable mesh. As demonstrated
by Figure 9, the tight, smooth, enclosing surfaces that can
be generated with our method make excellent simulation en-
velopes.

Currently, we are using the polygonizer described in [Bloo-
menthal, 1994] for extracting iso-surfaces. It works well for
smooth surfaces, but extracting small features requires a
very fine resolution and produces models with an inordinate
number of polygons. Our polygonal models produce useful
envelopes after being passed though surface simplification
software (see Figure 9), but extracting them is time con-
suming and requires substantial storage. (See Table 1.) We
are currently considering better methods for surface extrac-
tion based on the algorithm from [Boissonnat and Oudot,
2003]. The surfaces for the heavy-loader shown in Figures 1
and 8 were extracted using a partial implementation of that
algorithm.

Acknowledgments

We thank the other members of the Berkeley Graphics
Group for their helpful criticism and comments. We espe-
cially thank Ravi Kolluri for his help with polygonization,
Adam Bargteil for help with the heavy-loader simulation,
Carlo Séquin for his help with the fused deposition machine
used to make the teapots, and Okan Arikan for help render-
ing. Images in this paper were rendered with Pixie. This
work was supported in part by NSF CCR-0204377, Cali-
fornia MICRO 02-055, and by generous support from Pixar
Animation Studios, Intel Corporation, Sony Computer En-
tertainment America, the Okawa Foundation, and the Alfred
P. Sloan Foundation.

References
Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and

Silva, C. T. 2001. Point set surfaces. In IEEE Visualization 2001,

21–28.

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and

Silva, C. T. 2003. Computing and rendering point set surfaces.

IEEE Transactions on Visualization and Computer Graphics 9,

1 (Jan.), 3–15.

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl,

P. 1996. Meshless methods: An overview and recent developments.

Computer Methods in Applied Mechanics and Engineering 139 ,

3–47. Special issue on meshless methods.

Bittar, E., Tsingos, N., and Gascuel, M.-P. 1995. Automatic recon-

struction of unstructured 3d data: Combining a medial axis and

implicit surfaces. Proceedings of Eurographics 95 , 457–468.

Bloomenthal, J. 1994. An implicit surface polygonizer. In Graphics

Gems IV. 324–349.

7
210

ACM SIGGRAPH 2004, Los Angels, CA, August, 8–12, 2004

Figure 10: A collection of polygonal models processed with our algorithm. [Continued on next page.]

Bloomenthal, J., Ed. 1997. Introduction to Implicit Surfaces. Mor-

gan Kaufmann Publishers, Inc., San Francisco, California.

Boissonnat, J. D., and Oudot, S. 2003. Provably good surface sam-

pling and approximation. In Proceedings of the ACM SIGGRAPH

Symposium on Geometry Processing, 9–18.

Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright,

W. R., McCallum, B. C., and Evans, T. R. 2001. Reconstruction

and representation of 3d objects with radial basis functions. In

Proceedings of ACM SIGGRAPH 2001, 67–76.

Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agar-

wal, P., Jr., F. P. B., and Wright, W. 1996. Simplification en-

velopes. In Proceedings of ACM SIGGRAPH 1996, 119–128.

Cohen-Or, D., Solomovici, A., and Levin, D. 1998. Three-dimensional

distance field metamorphosis. ACM Transactions on Graphics 17,

2 (Apr.), 116–141.

Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 1999. Im-

plicit fairing of irregular meshes using diffusion and curvature flow.

In Proceedings of ACM SIGGRAPH 1999, 317–324.

Fleishman, S., Alexa, M., Cohen-Or, D., and Silva, C. T. 2003. Pro-

gressive point set surfaces. ACM Transactions on Graphics 22, 4

(Oct.), 97–1011.

Jones, T. R., Durand, F., and Desbrun, M. 2003. Non-iterative,

feature-preserving mesh smoothing. ACM Transactions on Graph-

ics 22, 3 (July), 943–949.

Keren, D., and Gotsman, C. 1998. Tight fitting of convex polyhedral

shapes. International Journal of Shape Modeling, 111–126.

Morse, B., Yoo, T. S., Rheingans, P., Chen, D. T., and Subramanian,

K. 2001. Interpolating implicit surfaces from scattered surface data

using compactly supported radial basis functions. In Proceedings

of Shape Modelling International, 89–98.

Muraki, S. 1991. Volumetric shape description of range data using

“blobby model”. In Proceedings of ACM SIGGRAPH 1991, 227–

235.

Museth, K., Breen, D. E., Whitaker, R. T., and Barr, A. H. 2002.

Level set surface editing operators. ACM Transactions on Graph-

ics 21, 3 (July), 330–338.

Nooruddin, F. S., and Turk, G. 2000. Interior/exterior classification

of polygonal models. In IEEE Visualization 2000, 415–422.

Nooruddin, F. S., and Turk, G. 2003. Simplification and repair of

polygonal models using volumetric techniques. IEEE Transactions

on Visualization and Computer Graphics 9, 2 (Apr.), 191–205.

Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H.-P.

2003. Multi-level partition of unity implicits. ACM Transactions

on Graphics 22, 3 (July), 463–470.

Ohtake, Y., Belyaev, A., and Seidel, H.-P. 2003. A multi-scale

approach to 3d scattered data interpolation with compactly sup-

ported basis functions. In Proceedings of Shape Modelling Inter-

national, 292–300.

Savchenko, V. V., Pasko, A. A., Okunev, O. G., and Kunii, T. L. 1995.

Function representation of solids reconstructed from scattered sur-

face points and contours. Computer Graphics Forum 14, 4 (Oct.),

181–188.

8
211

Computer Graphics Proceedings, Annual Conference Series, 2004

Figure 11: Additional polygonal models processed with our algorithm. [Continued from previous page.]

Taubin, G. 1995. A signal processing approach to fair surface design.

In Proceedings of ACM SIGGRAPH 1995, 351–358.
Turk, G., and O’Brien, J. F. 1999. Shape transformation using vari-

ational implicit functions. In Proceedings of ACM SIGGRAPH

1999, 335–342.
Turk, G., and O’Brien, J. F. 2002. Modelling with implicit surfaces

that interpolate. ACM Transactions on Graphics 21, 4 (Oct.),

855–873.
Yngve, G., and Turk, G. 2002. Robust creation of implicit surfaces

from polygonal meshes. IEEE Transactions on Visualization and

Computer Graphics 8, 4 (Oct.), 346–359.
Zhao, H.-K., Osher, S., and Fedkiw, R. 2001. Fast surface reconstruc-

tion using the level set method. In IEEE Workshop on Variational

and Level Set Methods, 194–202.

A Analytical Line Integrals

Our integrated constraints require solving integrals of the form∫
P (p)

R(p)
dp (20)

where P (p) and R(p) are functions in p. The functions P and R
are respectively determined by the basis functions and the weight-
ing function. For our choices, P is a constant or linear polyno-
mial, and R is a quadratic polynomial with restricted form. We

cannot do the two-dimensional integral analytically, but the one-
dimensional line integral one does have an analytic solution.

Once we have selected a direction for the line integration, the
integrals for the constant and linear terms of P appear in the
following forms: ∫ a

0

1(
(x + k1)2 + k2

)2 dx (21)∫ a

0

x(
(x + k1)2 + k2

)2 dx (22)

where k1 and k2 are constant with respect to the integration vari-
able, x.

The solutions to these integrals are

β
−a

√
k2(k1(a + k1)− k2)− (k2

1 + k2)((a + k1)2 + k2)

2(k2)
3
2 (k2

1 + k2)((a + k1)2 + k2)
(23)

and

β
a
√

k2(a + k1) + k1((a + k1)2 + k2)

2(k2)
3
2 ((a + k1)2 + k2)

(24)

respectively, where

β =

(
tan−1

(
k1√
k2

)
− tan−1

(
a + k1√

k2

))
. (25)

9
212

Provably Good Moving Least Squares

Ravikrishna Kolluri ∗

Abstract
We analyze a moving least squares algorithm for reconstructing a
surface from point cloud data. Our algorithm defines an implicit
function I whose zero set U is the reconstructed surface. We prove
that I is a good approximation to the signed distance function
of the sampled surface F and that U is geometrically close to
and homeomorphic to F . Our proof requires sampling conditions
similar to ε-sampling, used in Delaunay reconstruction algorithms.

1 Introduction

Point sets have become a popular shape representation as
current scanning devices generate dense point sets capable
of modeling highly detailed surfaces. These point-based
representations have several advantages in modeling and
simulation, as mesh topology need not be maintained during
surface deformations. However, a continuous definition of
the surface represented by the points is needed for some
applications such as rendering and resampling. Surface
reconstruction algorithms are used to recover these smooth
surfaces from point clouds.

The input to our surface reconstruction algorithm is a set S
of sample points close to the surface F of a 3D object. Each
sample point has an approximate surface normal. The output
is an approximation of F . The approximation is represented
either implicitly as the zero surface of a scalar function or as
a surface triangulation.

Our surface reconstruction algorithm is based on a data
interpolation technique called moving least squares (MLS).
For each sample s ∈ S we define a globally smooth point
function that approximates the signed distance from F in the
local neighborhood of s. These functions are then blended
together using Gaussian weight functions, yielding a smooth
implicit function whose zero set is the reconstructed surface.

Our MLS construction is not new; it was originally
proposed by Shen, O’Brien, and Shewchuk [25] for building
manifold surfaces from polygon soup. The main contri-
bution of this paper is to introduce theoretical guarantees
for MLS algorithms. We prove that the implicit function
generated by our algorithm is a good approximation of the
signed distance function of the original surface. We also
show that the reconstructed surface is geometrically and
topologically correct.

The crust algorithm of Amenta and Bern [3] was the first
surface reconstruction algorithm that guaranteed a correct
reconstruction for sufficiently dense sample sets. The crust
is defined as a subset of the faces in the Delaunay complex of
the sample points. The sampling requirements are defined in

∗Department of Computer Science, University of California, Berkeley,
Berkeley, CA, 94720. Email: rkolluri@acm.org

terms of local feature size, which is the distance from a point
on the surface to its closest point on the medial axis. Our
sampling conditions, defined in Section 3, are also based on
the local feature size.

Unlike Delaunay-based algorithms, the MLS surface built
by our algorithm might not interpolate the sample points.
This allows us to reconstruct smooth surfaces from noisy
point clouds. Our algorithm can handle noisy data as long
as the amount of noise is small compared to the local feature
size of the sample points.

2 Related Work

There has been much work on surface reconstruction from
points clouds. A widely used technique defines the re-
constructed surface as the zero set of a three-dimensional
scalar function built from the input points. Hoppe, DeRose,
Duchamp, McDonald, and Stuetzle [16] provide one of
the earliest algorithms, which locally estimates the signed
distance function induced by the “true” surface being sam-
pled. Curless and Levoy [13] developed an algorithm that is
particularly effective for laser range data comprising billions
of point samples, like the statue of David reconstructed by
the Digital Michelangelo Project [18].

Smooth surfaces can also be built by fitting globally
supported basis functions to a point cloud. Turk and
O’Brien [26] show that a global smooth approximation can
be obtained by fitting radial basis functions. Carr et al. [12]
adapt this radial basis function-fitting algorithm to large data
sets using multipole expansions.

Instead of computing a single global approximation, mov-
ing least squares algorithms locally fit smooth functions to
each sample point and blend them together. Ohtake, Belyaev,
Alexa, Turk, and Seidel [22] use a partition-of-unity method
with a fast hierarchical evaluation scheme to compute sur-
faces from large data sets. Our MLS construction is based
on the algorithm given by Shen, O’Brien, and Shewchuk [25]
that introduced the idea of associating functions, rather than
just values, with each point to ensure that the gradient of the
implicit function matches the gradient of the signed distance
function near the sample points.

A different approach to moving least squares is the non-
linear projection method originally proposed by Levin [17].
A point-set surface is defined as the set of stationary points
of a projection operator. This surface definition was first
used by Alexa et al. [2] for point based modeling and
rendering. Since then the surface definition has been used for
progressive point-set surfaces [15] and in PointShop3D [24],
a point based modeling tool. Amenta and Kil [6] give an

213

Figure 1: Left, a set of points with outside normals. Center, the implicit function built by our algorithm from the points. Right,
the reconstructed curve which is the zero set of the implicit function.

explicit definition of point set surfaces as the local minima
of an energy function along the directions given by a vector
field. Adamson and Alexa [1] provide a simplified implicit
surface definition for efficient ray tracing and define sam-
pling conditions that guarantee a manifold reconstruction.
However, current definitions of point-set surfaces come with
no guarantees on the correctness of the reconstructed surface.

Following the crust algorithm of Amenta and Bern [3],
there have been many Delaunay-based algorithms for surface
reconstruction with provable guarantees. Amenta, Choi,
Dey, and Leekha [4] present the cocone algorithm, which is
much simpler than the crust and prove that the reconstructed
surface is homeomorphic to the original surface. The
powercrust algorithm of Amenta, Choi, and Kolluri [5] uses
weighted Delaunay triangulations to avoid the manifold ex-
traction step of the crust and cocone algorithms. Boissonnat
and Cazals [8] build a smooth surface by blending together
functions associated with each sample point, using natural
neighbor coordinates derived from the Voronoi diagram of
the sample points. The robust cocone algorithm of Dey and
Goswami [14] guarantees a correct reconstruction for noisy
point data. Even when the input points are noisy, surfaces
reconstructed by Delaunay algorithms interpolate (a subset
of) the sample points. As a result, the reconstructed surface
is not smooth and a mesh smoothing step is often necessary.

Smooth meshes that approximate F can by built by
contouring the zero set of the implicit function defined by
our algorithm. The marching cubes [19] algorithm is widely
used for contouring level sets of implicit functions. There
has been some recent work on contouring algorithms with
theoretical guarantees. Boissonnat and Oudot [11] give a
Delaunay-based contouring algorithm that guarantees good
quality triangles in the reconstructed surface. Boissonnat,
Cohen-Steiner and Vegter [10] present a contouring algo-
rithm with guarantees on the topology of the reconstructed
triangulation.

Signed distance functions of surfaces are useful in their
own right. Level set methods that have been used in surface
reconstruction [27], physical modeling of fluids, and in many
other areas rely on signed distance functions to implicitly

Figure 2: A closed curve along with its medial axis. The
local feature size of p is the distance to the closest point x on
the medial axis.

maintain moving surfaces. See the book by Osher and
Fedkiw [23] for an introduction to level set methods. Mitra
et al. [20] use approximation of signed distance functions
to align overlapping surfaces. The implicit function con-
structed by our algorithm can be used as an approximation
to the signed distance function.

3 Sampling Requirements

The local feature size (lfs) at a point p ∈ F is defined as the
distance from p to the nearest point of the medial axis of F .
A point set S is an ε-sample if the distance from any point
p ∈ F to its closest sample in S is less than εlfs(p). Amenta
and Bern [3] prove that a good approximation to F can be
obtained from the Delaunay triangulation of an ε-sample S.

Our results on the correctness of the reconstructed surface
require uniform ε-sampling. Assume that the data set has
been scaled such that the lfs of any point on F is at least 1.
A point set S is a uniform ε-sample of F if the distance from
each point p ∈ F to its closest sample is less than ε. The
amount of noise in the samples should be small compared
to the sampling density. For each sample s, the distance to
its closest surface point p should be less than ε2 as shown in
Figure 2. Moreover, the angle between the normal ~nr of a
sample r and the normal ~nq, of the closest surface point to r,
should be than ε.

214

Arbitrary oversampling in one region of the surface can
distort the value of the implicit function in other parts of the
surface. As this rarely happens in practice, we assume that
local changes in the sampling density are bounded. Let αp

be the number of samples inside a ball of radius ε centered
at a point p. We assume that for each point p, if αp > 0,
the number of samples inside a ball at radius 2ε at p is at
most 8α. We will use two parameters to state our geometric
results. The value of ε depends on the sampling density and
we define a second parameter, τ = 2ε. The results in this
paper hold true for values of ε ≤ 0.01.

4 Surface Definition

Given a set of sample points S near a smooth, closed surface
F , our algorithm builds an implicit function I whose zero
surface U approximates F . We assume that the outside
surface normal ~ni is approximately known for each sample
point si ∈ S as shown in Figure 1. In practice, the normal
of si is obtained by local least squares fitting of a plane to
the samples in the neighborhood around si. Mitra, Nguyen
and Guibas [21] analyze the least squares method for normal
estimation and present an algorithm for choosing an optimal
neighborhood around each sample point.

Our algorithm begins by constructing a point function for
each sample point in S. The point function Psi

for sample
point si is defined as the signed distance function from x to
the tangent plane at si, Psi

(x) = (x − si) · ~ni.

The implicit function I is a weighted average of the point
functions.

I(x) =

∑

si∈S Wi(x)((x − si) · ~ni)
∑

sj∈S Wj(x)
.

We use Gaussian functions, Wi(x) = e−‖x−si‖2/ε2/Ai in
computing the weighted average of the point functions. Here
Ai is the number of samples inside a ball of radius ε centered
at si, including si itself.

5 Geometric Properties

Amenta and Bern [3] prove the following Lipschitz condition
on the surface normal with respect to the local feature size.
As we assume that for each point p ∈ F , lfs(p) ≥ 1, we can
state the Lipschitz condition in terms of the distance between
two points.

Theorem 1. For points p, q on the surface F with d(p, q) ≤
r, for any r < 1/3, the angle between the normals at p and
q is at most r/(1 − 3r) radians.

Consider the surface inside a small ball B centered at a
point p ∈ F . As shown in Figure 3, the surface inside B has
to be outside the medial balls at p. As a result, the surface
inside B lies between two planes close to the tangent plane
of p.

���
�

���
�

���
�

s

B

B

p

c

B
P
2

P
1

F

out

in

r

Figure 3: The surface inside a ball B of radius r has to be
outside the medial balls Bi and Bo. As a result, all samples
in B are between two planes P1 and P2 that are at a distance
of O(r2 + ε2) from p.

Observation 2. For a point p ∈ F , let B be a ball of radius
r < 0.1 centered at p. The samples inside B lie between two
planes P1, P2 parallel to the tangent plane at p. The distance

from p to P1, P2 is less than (r+ε2)2

2 + ε2.

Let Fout be the outside τ -offset surface of F that is
obtained by moving each point x on F along the normal at
x by a distance τ . Similarly, let Fin be the inside τ -offset
surface of F . The τ -neighborhood is the region bounded
by the inside and the outside offset surfaces. For any point x
inside the τ -neighborhood, |φ(x)| < τ , where φ is the signed
distance function of F .

The main result in this section is that the zero set U is
geometrically close to F . We show this by proving that U is
inside the τ -neighborhood of F (Theorem 9). We then show
that the reconstructed surface is a manifold by proving that
the gradient of I is non-zero at each point in the zero set of
I(Theorem 18).

Consider a point x shown in Figure 4, whose closest point
on the surface is p. The vector ~xp is parallel to the surface
normal of p and ‖ ~xp‖ = |φ(x)|. Let B1(x), B2(x) be two
balls centered at point x. The radius of B1(x) is |φ(x)| and
B2(x) is a slightly larger ball whose radius is |φ(x)|+ τ + ε.

Let N(x) be the weighted combination of the point func-
tions at x, N(x) =

∑

si∈S Wi(x)Psi
(x) and let D(x) be the

sum of all weight functions at x, D(x) =
∑

si∈S Wi(x)

Our geometric results are based on the observation that
samples outside B2(x) have little effect on the value of the
implicit function at x. To see this, we first separate the contri-
butions of samples inside B2(x) and samples outside B2(x).
Let Nin(x) =

∑

si∈B2(x) Wi(x)Psi
(x) and Nout(x) =

∑

si 6∈B2(x) Wi(x)Psi
(x) be the contributions to N(x) by

samples inside and outside B2(x). Similarly, let Din(x) =
∑

si∈B2(x) Wi(x) and Dout(x) =
∑

si 6∈B2(x) Wi(x) be the
contributions to D(x) by samples inside and outside B2(x).

Consider the space outside B2(x) divided into spherical
shells of width ε as shown in Figure 4. Let Hw be the
region between balls of radius w and w + ε. We bound the
contributions of all samples outside B2(x) by summing over
the contributions of all samples in each shell.

215

εw+

wH

��

��

F

x
B1

w

p

B
2

Figure 4: For a point x, p is the closest point to x on the
surface. The space outside the ball B2(x) is divided into
spherical shells of width ε. Hw is the shell bounded by
spheres of radius w and w + ε.

We begin by proving an upper bound on the number of
samples inside each shell normalized by their oversampling
factors.

Lemma 3. For a ball Bε of radius ε
2 ,

∑

si∈Bε

1
Ai

≤ 1.

Proof. If Bε is empty we are done; assume that Bε contains
α > 0 samples. Let si be a sample inside Bε. As all samples
inside Bε are inside a ball of radius ε centered at si, Ai ≥ α.
Hence the contribution of all samples inside Bε is given by
∑

si∈Bε

1
Ai

≤ α 1
α ≤ 1.

Lemma 4. For samples si in spherical shell Hw centered at
point x,

∑

si∈Hw

1

Ai
<

200

ε2
(w2 + wε + ε2).

Proof. Let C be the smallest number of spheres of radius ε
2

that cover Hw. Consider a covering of Hw with axis-parallel
cubes of size ε√

3
. Any cube that intersects Hw is inside a

slightly larger shell bounded by spheres of radius w+2ε and
w−ε centered at x. So the number of cubes that cover Hw is
less than 36

√
3πε(w2+wε+ε2)

ε3 . Any cube in this grid is covered
by a sphere of radius ε

2 . Applying Lemma 3 to each sphere,
∑

si∈Hw

1
Ai

≤ C ≤ 36
√

3πε(w2+wε+ε2)
ε3 < 200

ε2 (w2 + wε +

ε2).

5.1 Offset Regions. In this section we obtain bounds on
the difference between I(x) and the signed distance function
φ(x) for points x outside the τ -neighborhood and use these
bounds to show that the implicit function is non-zero outside
the τ -neighborhood.

We begin with a result about the point functions of sam-
ples inside B2(x). We prove that for any sample s ∈ B2(x),
Ps(x) is close to φ(x). In order to state this result for points
in the inside and outside offset regions, it is convenient to
define µ(x) = φ(x)

|φ(x)| to be the sign function of F . For x

outside Fout, µ(x) = 1 and for x inside Fin, µ(x) = −1.

Lemma 5. Let x be a point outside the τ -neighborhood. Let
Ps(x) be the point function of sample s ∈ B2(x), evaluated
at x. Then,

µ(x)Ps(x) ≤ µ(x)φ(x) + 3ε,

and,
µ(x)Ps(x) ≥ µ(x)φ(x)(1− 6ε) − 12ε2.

Proof. Let p be the closest point to x on the surface. Then,
d(x, p) = µ(x)φ(x). Recall that τ = 2ε. As s ∈ B2(x),

µ(x)Ps(x) ≤ d(x, s)

≤ d(x, p) + τ + ε

< µ(x)φ(x) + 3ε.

Let p′ be the closest point to s on the surface F as shown
in Figure 5. Let Bm be the medial ball touching p′ on the
side of F opposite x and let l be the radius of Bm. Let θ
be the angle between xp′ and the normal at p′. The distance
between x and the center of Bm is given by,

d2(x, q) = (d(x, p′) cos θ + l)2 + d2(x, p′) sin2 θ.

The medial ball Bm cannot intersect B1(x) which is con-
tained in a medial ball on the opposite side of the surface.
Hence the sum of their radii should be less than the distance
between their centers.

(l + d(x, p))2 ≤ (d(x, p′) cos θ + l)2

+ d2(x, p′) sin2 θ.

cos θ ≥
2ld(x, p) − (d2(x, p′) − d2(x, p))

2ld(x, p′)
.

From the sampling conditions, d(x, s) ≥ d(x, p′) − ε2 and
the angle between the normal at s and the surface normal at
p′ is less than ε. As d(x, p′) ≥ τ , the angle between xs and
xp′ is less than arcsin(ε2

τ) < 2ε2

τ . So the angle between xs

and the normal at s is at most θ + 2ε2

τ + ε. Using standard

trigonometric formulae, it is easy to show that, cos(θ+ 2ε2

τ +

ε) ≥ cos θ − 2ε2

τ − ε.

µ(x)Ps(x) ≥ d(x, s) cos(θ +
2ε2

τ
+ ε)

≥ (d(x, p′) − ε2) ·
(

2ld(x, p) − (d2(x, p′) − d2(x, p))

2ld(x, p′)

−
2ε2

τ
− ε

)

.

From the local feature size assumption, l ≥ 1. Substituting
the value of τ = 2ε we have,

µ(x)Ps(x) ≥ µ(x)φ(x)(1− 6ε) − 12ε2.

216

B m

B
2

B
1

��

�������
�

��

�������
�

	

p
F

s

q l

p’

θ
x

Figure 5: Sample s is inside B2(x) and p′ is the point closest
to s on F . Bm is a medial ball touching p′ on the side of F
opposite x.

Using the result of Lemma 5, it is easy to show that for
each sample s ∈ B2(x), Ps(x) and φ(x) are either both
positive or both negative.

Corollary 6. Let x be a point outside the τ -neighbor-
hood. For a sample s ∈ B2(x), let Ps(x) be the point
function of s evaluated at x. For values of ε ≤ 0.08,
φ(x)Ps(x) > 0.

Proof. For a point x outside Fout, φ(x) ≥ τ ≥ 2ε. Applying
the lower bound on PS(x) from Lemma 5, we can write

φ(x)Ps(x) ≥ 2ε(2ε(1 − 6ε) − 12ε2).

It is now easy to check that for ε ≤ 0.08, 2ε(1 − 6ε) −
12ε2 > 0. A similar argument proves the result for points
inside Fin.

We now prove two results showing that the points outside
B2(x) have little effect on the value of I(x). In Lemma 7 we
prove that Dout(x) � Din(x) and in Lemma 8 we prove that
|Nout(x)| � |Nin(x)|. We will use two constants c1 = 0.05
and c2 = 0.01c1 to state our geometric results.

Lemma 7. Let x be a point outside the τ -neighborhood. Let
Dout(x) and Din(x) be the total weights of samples inside
B2(x) and outside B2(x) at x, respectively. Then, Dout(x)

Din(x) <
c1.

Proof. Consider the division of space outside B2(x) into
spherical shells of width ε starting with B2(x) whose radius
is w0 = |φ(x)| + τ + ε, as shown in Figure 4. The value
of the Gaussian function associated with each sample inside
shell Hw at x is at most e−w2/ε2 . Using the bound on the
weight of samples in Hw from Lemma 4,

Dout(x) ≤
200

ε2

∞
∑

i=0

(w2
i + εwi + ε2)e−w2

i /ε2

≤
200

ε2

∞
∑

i=0

(w2
i + εwi + ε2)e−(w0wi)/ε2 . (1)

Here wi=w0+iε is the radius of the smaller sphere bounding
the ith shell. The dominant term in Equation 1 is a
geometric series with a common ratio e−w0/ε < 0.01. The
summation has a closed form solution easily obtained using
Mathematica. An upper bound is given by

Dout(x) ≤
400

ε2
(w2

0 + εw0 + ε2)e−w2

0
/ε2 .

We now obtain a lower bound on the contribution of samples
inside B2(x). Let Bε be a ball of radius ε centered at p. From
the sampling conditions, we know that Bε contains α ≥ 1
samples. In our sampling requirements, we also assumed
that the rate of change in sampling density is bounded. Since
a ball of radius ε centered at p contains α ≥ 1 samples, a ball
of radius 2ε centered at p contains at most 8α samples. So
the normalizing factor associated with si ∈ Bε, 1

Ai
≥ 1

8α .
We now have a lower bound on the weight of samples inside
Bε:

Din(x) ≥
∑

si∈Bε

1

Ai
e−(|φ(x)|+ε)2/ε2

≥
α

8α
e−(|φ(x)|+ε)2/ε2

=
1

8
e−(|φ(x)|+ε)2/ε2 . (2)

An upper bound on the ratio of the inside and the outside
weights is given by,

Dout(x)

Din(x)
≤

3200

ε2
(w2

0 + εw0 + ε2)e−(w2

0
−(|φ(x)|+ε)2)/ε2 (3)

=
3200

ε2
(w2

0 + εw0 + ε2)e−τ(2|φ(x)|+τ+2ε)/ε2 .

For |φ(x)| ≥ τ , Dout(x)
Din(x) is a monotonically decreasing

function of |φ(x)|. The maximum value is obtained for
|φ(x)| = τ and w0 = 2τ + ε = 5ε.

Dout(x)

Din(x)
≤

3200

ε2
(31ε2)e−16 < c1.

Using the proof technique of Lemma 7 we now prove that
|Nout(x)|
|Nin(x)| is very small.

Lemma 8. Let x be a point outside the τ -neighborhood.
Let Nout(x) and Nin(x) be the contributions of samples
inside B2(x) and outside B2(x) to N(x), respectively. Then,
|Nout|
|Nin| < c1.

Proof. To compute an upper bound for Nout(x), again
consider the space outside B2(x) divided into shells of
radius ε as shown in Figure 4. For w ≥ τ , the value of
we−w2/ε2 decreases as w increases. Hence for a sample

si inside the shell Hw, |Psi
(x)|Wi(x) ≤ we−w2/ε2

Ai
. Let

w0 = |φ(x)|+ τ + ε and wi = w0 + iε. Using the bound on

217

the weight of samples in Hw from Lemma 4,

|Nout(x)| ≤
200

ε2

∞
∑

i=0

(w2
i + εwi + ε2)wie

−w2

i /ε2

≤
200

ε2

∞
∑

i=0

(w2
i + εwi + ε2)wie

−(w0wi)/ε2 .

Like the summation in Equation 1, the above summation has
a closed form solution easily obtained using Mathematica.

|Nout(x)| <
400

ε2
w0(w

2
0 + εw0 + ε2)e−w2

0
/ε2 .

From Corollary 6, the point functions of all samples inside
B2(x) have the same sign at x. Hence a lower bound on the
contribution of the sample points inside B2(x) to |Nin(x)|
is given by summing over the contributions of all samples
inside a ball Bε of radius ε around p.

|Nin(x)| ≥ min
si∈Bε(x)

{|Psi
(x)|}Din(x).

From Theorem 1, the angle between the normal of each
sample si ∈ Bε(x) and the normal of p is at most 2ε.
As x is outside the τ -neighborhood, |Psi

(x)| ≥ τ cos 2ε.
Substituting the lower bound of Din(x) from Equation 2,

|Nin(x)| >
τ

10
e−(|φ(x)|+ε)2/ε2 .

|Nout(x)|

|Nin(x)|
≤

4000

ε2τ
w0(w

2
0 + εw0 + ε2)e−(w2

0
−(|φ(x)|+ε)2)/ε2

≤
4000

ε2τ
w0(w

2
0 + εw0 + ε2)e−τ(2|φ(x)|+τ+2ε)/ε2 .

The value of Nout(x)
Nin(x) is smallest for |φ(x)|=τ . Substituting

the value of τ = 2ε,

|Nout(x)|

|Nin(x)|
≤

4000

2ε3
(135ε3)e−16 < c1.

Lemma 8 proves that I(x) is mostly determined by the
point functions of the samples inside the ball B2(x). We can
derive bounds for I(x) in terms of φ(x) by combining the
results in Lemma 8 and Lemma 5.

µ(x)I(x) ≤ (µ(x)φ(x) + 3ε)(1 + c1). (4)

We can also derive a similar lower bound on I(x).

µ(x)I(x)≥ (µ(x)φ(x)(1 − 6ε) − 12ε2)
1 − c1

1 + c1
. (5)

Equation 4 and Equation 5 show that the implicit function
is close to the signed distance function for points outside the
τ -neighborhood. We now have all the tools required to prove
our main geometric result: the implicit function I(x) is non-
zero outside the τ -neighborhood.

2B

F
in

Fout������

��

B1

px
F

B

Figure 6: For x in the τ -neighborhood, the samples inside
balls B1(x) and B2(x) are inside a ball of radius 6ε centered
at p.

Theorem 9. Let ε ≤ 0.08. For each point x outside Fout,
I(x) > 0 and for each point y inside Fin, I(y) < 0.

Proof. This proof is exactly like the proof of Corollary 6. It
is easier to get the result directly from Equation 5. Consider
a point x outside Fout. From Equation 5,

I(x) ≥ (µ(x)φ(x)(1− 6ε) − 12ε2)
1 − c1

1 + c1

≥ (2ε(1 − 6ε) − 12ε2)
1 − c1

1 + c1
.

For ε ≤ 0.08, it is easy to check that 2ε(1−6ε)−12ε2 > 0. A
similar argument proves that the implicit function is negative
at any point inside Fin.

Theorem 9 proves that the implicit function I does not
have any spurious zero crossings far away from the sample
points. We now have an upper bound of τ on the Hausdorff
distance between F and U .

Theorem 10. For a point x ∈ U , let p be the closest point
in F . Then d(x, p) ≤ τ .

Proof. From Theorem 9, the implicit function has a non-
zero value outside the τ -neighborhood. Hence, the point
x is constrained to lie inside the τ -neighborhood of F and
d(x, p) ≤ τ .

Theorem 11. For a point p ∈ F , let x be the closest point
in U . Then, d(x, p) ≤ τ .

Proof. If I(p) = 0 we are done; assume without loss of
generality that I(p) < 0. Let q be the closest point to p on
the outside offset surface Fout. From Theorem 9, I(q) > 0.
As the implicit function I is continuous, there is a point y on
pq at which I(y) = 0 and d(y, p) ≤ τ . Since x is the closest
point to p in U , d(x, p) ≤ d(y, p) ≤ τ .

5.2 The τ -neighborhood. To guarantee that U is a man-
ifold, we have to prove that the gradient of I is non-zero at
each point in U . We know from the results in Section 5.1
that U is inside the τ -neighborhood of F . In this section
we will study the properties of ∇I(x) for points x inside the
τ -neighborhood.

218

For a point x inside the τ -neighborhood, B2(x) is defined
as a ball of radius

√

(|φ(x)| + ε)2 + 25ε2 centered at x.
With this new definition of B2(x), it is easy to show that the
samples inside B2(x) are contained in a small ball centered
at the point closest to x in F .

Observation 12. Let x be a point that is inside the τ -
neighborhood as shown in Figure 6. Let p be the closest
point to x in F . All samples inside B2(x) are contained in a
ball of radius 6ε centered at p.

Because of the Lipschitz condition on the surface normals
of F , the difference between the point functions of the
samples inside a small ball at a point on the surface is
bounded.

Lemma 13. Consider a point x whose closest point on the
surface F is p. Let ~n be the surface normal at p and let
B be a ball of radius 6ε at p. For each sample si ∈ B,
Psi

(x) = φ(x) + ζi where |ζi| ≤ 56ε2 + 36|φ(x)|ε2.

Proof. Let pi be the closest point to si on the surface. As
d(p, pi) ≤ 6ε + ε2, the angle between the normal at pi and ~n

is less than 6ε+ε2

1−3(6ε+ε2) from Theorem 1. Let ~ni be the normal
associated with si. From the sampling conditions the angle
between the normal of pi and ~ni is at most ε. So the angle
between ~ni and ~n is given by, θ < 6ε+ε2

1−3(6ε+ε2) + ε. We can

now write ~ni = ~n + ~δi, where ‖~δi‖ ≤ θ√
2

.

(x − si) · ~ni = ((x − p) + (p − si)) · ~ni

= (x − p) · ~ni + (p − si) · (~n + ~δi)

= (x − p) · ~n − (x − p) · (~n − ~ni)

+(p − si) · (~n + ~δi).

Because p is the closest point to x on the surface, (x−p)·~n =
φ(x) and (x − p) is parallel to ~n. Since the angle between ~n
and ~ni is less than θ,

|(x − p) · (~n − ~ni)| ≤ |φ(x)|(1 − cos θ) ≤
|φ(x)|θ2

2
.

Since sample si is inside B,

|(p − si) · ~δi| ≤ (6ε)
θ
√

2
< 36ε2.

From Observation 2, the distance from each sample inside

B to the tangent plane at p is at most (6ε+ε2)2

2 + ε2 < 20ε2.
Hence (p − si) · ~n < 20ε2. We can now write Psi

(x) =
φ(x) + ζi, where |ζi| ≤ 56ε2 + 36|φ(x)|ε2.

We now show that the value of I(x) is mostly deter-
mined by the points inside B2(x) by proving results similar
to Lemma 7 and Lemma 8 for a point x inside the τ -
neighborhood.

Lemma 14. For a point x in the τ -neighborhood,

Dout(x)

Din(x)
< c2.

Proof. For a point x inside the τ -neighborhood,
w0 =

√

(|φ(x)| + ε)2 + 25ε2. Substituting this into
Equation 3,

Dout(x)

Din(x)
≤

3200

ε2
(w2

0 + εw0 + ε2)e−25.

Dout(x)
Din(x) has the largest value when φ(x)=τ and wo =
√

34ε < 6ε. So

Dout(x)

Din(x)
<

3200

ε2
(43ε2)e−25 < c2.

Lemma 8 is not true for x inside the τ -neighborhood, as
|Nin(x)| might be zero. However, we can prove an upper
bound on Nout(x)

D(x) . The proof of this Lemma is exactly like
the proof of Lemma 14.

Lemma 15. For a point x inside the τ -neighborhood,
|Nout(x)|

D(x) < c2ε.

We begin by splitting the contributions to ∇I(x) in the
following way: ∇I(x) = ∇Iin(x) + ∇Iout(x). Here,

∇Iin(x) =
Din(x)∇Nin(x) − Nin(x)∇Din(x)

D2(x)
, (6)

and

∇Iout(x) =
Dout(x)∇Nin(x)

D2(x)
+

∇Nout(x)

D(x)

−
Nout(x)∇Din(x)

D2(x)
−

Nin(x)∇Dout(x)

D2(x)

−
Nout(x)∇Dout(x)

D2(x)
. (7)

To show that the gradient of I is never zero inside the τ -
neighborhood, we will prove a stronger result. For a point
x in the τ -neighborhood, we show that ∇I(x) · ~n > 0
where ~n is the normal of the point closest to x on the
surface. In Section 6 we will use this result to show that
U is homeomorphic to F .

The norm of the gradient of Gaussian weight functions
decreases exponentially with distance. Using the proof
technique of Lemma 8, we can obtain an upper bound on
‖∇Nout‖ and ‖∇Dout‖. Observation 16 summarizes the
results.

Observation 16. For a point x in the τ -neighborhood.

1.
∥

∥

∥

∇Dout(x)
D(x)

∥

∥

∥
< c2

ε , and

2.
∥

∥

∥

∇Nout(x)
D(x)

∥

∥

∥
< c2.

219

We now show that points outside B2(x) have little effect
on ∇I(x) by proving an upper bound on ‖∇Iout(x)‖.

Lemma 17. For a point x in the τ -neighborhood,
‖∇Iout(x)‖ < c1.

Proof. We will compute the norm of each term in the
expression for ∇Iout(x) given by Equation 7.

•
∥

∥

∥

Dout(x)∇Nin(x)
D2(x)

∥

∥

∥
.

We can write ∇Nin(x)
D(x) as

∇Nin(x)

D(x)
=

∑

si∈B2(x) Wsi
(x)(ni −

2Psi
(x)

ε2 (x − si))
∑

si
Wsi

(x)
.

Clearly,
∥

∥

∥

∥

∇Nin(x)

D(x)

∥

∥

∥

∥

≤ max
i

{‖ni‖ +
|2Psi

(x)|

ε2
‖(x − si)‖}.

As x is inside the τ -neighborhood and si is inside
B2(x), the point function |Psi

(x)| ≤ ‖(x − si)‖ < 6ε.

So
∥

∥

∥

∇Nin(x)
D(x)

∥

∥

∥
< 73. From Lemma 14, Dout(x)

D(x) < c2.

∥

∥

∥

∥

Dout(x)∇Nin(x)

D2(x)

∥

∥

∥

∥

< 73c2. (8)

•
∥

∥

∥

∇Nout(x)
D(x)

∥

∥

∥

From Observation 16,
∥

∥

∥

∥

∇Nout(x)

D(x)

∥

∥

∥

∥

< c2. (9)

•
∥

∥

∥

Nout(x)∇Din(x)
D2(x)

∥

∥

∥

∇Din(x)
D(x) can be written as

∇Din(x)

D(x)
=

∑

si∈B2(x) Wi(x)(− 2
ε2 (x − si))

∑

si
e−‖x−si‖2/ε2

.

As ‖x − si‖ ≤ 6ε, ‖∇Din(x)
D(x) ‖ ≤ 12

ε . From Lemma 15,
Nout(x)

D(x) < c2ε.

∥

∥

∥

∥

Nout(x)∇Din(x)

D2(x)

∥

∥

∥

∥

< 12c2. (10)

•
∥

∥

∥

Nin(x)∇Dout(x)
D2(x)

∥

∥

∥

For any point x inside the τ -neighborhood, |Nin(x)
D(x) | ≤

max{Psi
(x)|si ∈ B2(x)} ≤ 6ε. From Observation 16,

∥

∥

∥

∇Dout(x)
D(x)

∥

∥

∥
< c2

ε .

∥

∥

∥

∥

Nin(x)∇Dout(x)

D2(x)

∥

∥

∥

∥

< 6c2. (11)

•
∥

∥

∥

Nout(x)∇Dout(x)
D2(x)

∥

∥

∥

From Observation 16,
∥

∥

∥

∇Dout(x)
D(x)

∥

∥

∥
< c2

ε . Combining

this with the bound in Lemma 15,
∥

∥

∥

∥

Nout(x)∇Dout(x)

D2(x)

∥

∥

∥

∥

<
c2

ε
(c2ε) < c2

2. (12)

Adding the norms of each term in the expression for
∇Iout(x) we get

‖∇Iout(x)‖ < 93c2 < c1.

Theorem 18. Let x be a point in the τ -neighborhood of F
and let p be the point on F closest to x. Let ~n be the normal
of p. Then for values of ε ≤ 0.01, ~n · ∇I(x) > 0.

Proof. From Lemma 17,

~n · ∇Iout(x) ≤ ‖∇Iout(x)‖ < c1.

We now consider the expression for ∇Iin(x).

∇Iin(x) =
1

D2(x)

∑

si

∑

sj

Wi(x)Wj(x){~ni

+
2Psi

(x)

ε2
(si − sj)}.

The summation is over all samples si, sj ∈ B2(x). From
Observation 12, all samples in B2(x) are contained inside
a ball of radius 6ε centered at p. So we can bound the
difference between the point functions of samples inside
B2(x) using Lemma 13.

The point function of each sample si ∈ B2(x) can be
written as Psi

(x) = φ(x) + ζi where |ζi| < 56ε2 + 36τε2 <
60ε2. Let Cij(x) = Wi(x)Wj(x).

∇Iin(x) =
1

D2(x)

∑

si

∑

sj

Cij(x)(~ni +
2|φ(x)|

ε2
(si − sj)

+
2ζi

ε2
(si − sj))

=
1

D2(x)

∑

si

∑

sj

Cij(x)(~ni +
2ζi

ε2
(si − sj)).

From the above equation,

~n · ∇Iin(x)≥

∑

si

∑

sj
Cij(x)

D2(x)
min

ij
{~n · (~ni +

2ζi

ε2
(si − sj))}.

As we are summing over over all samples inside B2(x),
∑

i

∑

j Cij(x) = D2
in(x). From Lemma 14, D2

in
(x)

D2(x) ≥

(1 − c1)
2. Note that the samples inside B2(x) are in a ball

of radius 6ε centered at p. Hence we can use Theorem 1 and
Observation 2 to obtain an upper bound on the terms that
appear in the above equation.

220

������������

������������

���
�

������������

F

F

F

t

n
r

p

u

out

in

Figure 7: Points r, t are the closest points to p on the offset
surfaces. The line segment rt intersects the zero set U at a
unique point u.

From Theorem 1, the angle between ~n and ~ni is less
than 10ε. Hence ~n · ~ni > cos 10ε. From Observation 2,
the distance from all samples inside B2(x) to the tangent

plane at p is at most (6ε+ε2)2

2 + ε2. Hence ~n · (si − sj) ≤

2((6ε+ε2)2

2 + ε2) < 40ε2.

~n · ∇I(x)≥ ~n · ∇Iin(x) − ‖∇Iout(x)‖

≥ (1 − c1)
2(cos(10ε) −

max{
2ζi

ε2
|~n · (si − sj)|}) − c1

≥ (1 − c1)
2(cos(10ε) − 4800ε2) − c1.

It is easy to verify that ~n · ∇I(x) > 0 for values of ε ≤
0.01.

Theorem 18 also proves that the gradient can never be zero
inside the τ -neighborhood. From Theorem 9, the zero set of
I is inside the τ -neighborhood of F . Hence from the implicit
function theorem [7], zero is a regular value of I and the zero
set U is a compact, two-dimensional manifold.

The normal of the reconstructed surface at a point u ∈ U
is determined by the gradient of the implicit function at u,
~nu = ∇I(u)

‖∇I(u)‖ . Using Theorem 18, we can bound the angle
between ~nu and the normal of the point closest to u in F .

Theorem 19. Let u be a point on the reconstructed surface
U whose closest point on F is p. Let ~nu be the normal of U
at point u and let ~n be the normal of F at point p. An upper
bound on the angle θ between ~nu and ~n is given by,

cos θ ≥
(1 − c1)

2(cos(10ε) − 4800ε2) − c1

1 + 2400ε + c1
.

6 Topological Properties

We now use the results in Section 5 to define a homeomor-
phism between F and U . As F and U are compact, a one-
to-one, onto, and continuous function from U to F defines a
homeomorphism.
Definition: Let Γ : IR3 → F map each point q ∈ IR3 to the
closest point of F .

Theorem 20. The restriction of Γ to U is a homeomorphism
from U to F .

Proof. The discontinuities of Γ are the points on the me-
dial axis of F . As U is constrained to be inside the τ -
neighborhood of F , the restriction of Γ to U is continuous.

Now we show that Γ is one-to-one. Let p be a point on F
and let ~n be the normal at p as shown in Figure 7. Consider
the line segment parallel to ~n from r to t. At each point y ∈
rt, ∇I(y) · ~n > 0 from Theorem 18. So the function I(x)
is monotonically decreasing from r to t and there is a unique
point u on rt where I(u) = 0. Assume there is another point
v ∈ U for which Γ(v) = x. The point v has to be outside the
segment rt and the distance from v to its closest point on F
is greater than τ . This contradicts Theorem 10.

Finally we need to show that Γ is onto. As Γ maps
closed components of U onto closed components of F in
a continuous manner, Γ(U) should consist of a set of closed
connected components. Consider the point p in Figure 7.
Assume that q = Γ(u) is not in the same component of
F as p. Let Bu be the ball of radius τ centered at u
that intersects two components of F , one containing point
p and one containing point q. Boissonnat and Cazals [9]
(Proposition 12) show that any ball whose intersection with
F is not a topological disc contains a point of the medial
axis of F . Since point p is inside the ball Bu that contains
a point of the medial axis, lfs(p) ≤ 2τ . Recall that τ = 2ε
and that our sampling conditions require ε ≤ 0.01. Hence,
lfs(p) ≤ 2τ ≤ 0.04. This violates our assumption that
lfs(p) ≥ 1.

7 Discussion

One disadvantage of our algorithm is that it requires sample
normals. However, approximate sample normals can be
easily obtained for laser range data by triangulating the range
images. Each sample normal can be oriented using the
location of the range scanner. When oriented normals are
unavailable, the absolute distance to the tangent plane at each
sample can be used instead of the signed distance as a point
function to define a new function Iu(x). The zero set of
this function is hard to analyze as its gradient is not smooth
near the sample points. However, the results in this paper
can be easily extended to show that the τ -level set of Iu(x)
consists of two components on each side of the surface, each
homeomorphic to F .

Our sampling requirements are determined by the smallest
local feature size of a point on F . Recall that the width
of the Gaussian functions used in our algorithm depends
on the smallest local feature size. When sampling density
is proportional to the local feature size, the width of the
Gaussian weight functions might be much smaller than the
spacing between sample points in areas of the surface with
large local feature size. As a result, the reconstructed surface
will be noisy and might have the wrong topology. One so-
lution is to make the width of the Gaussian weight functions

221

proportional to the spacing between sample points. We are
currently working on extending the MLS construction and
our proofs to deal with adaptively sampled surfaces.

The implicit surface we construct in this paper only passes
near the sample points, but we can construct a surface that
interpolates the sample points with weight functions such as

Ws(x) = e−‖x−s‖2

‖x−s‖2 , that are infinite at the sample points. We
can prove that the zero set is restricted to the τ -neighborhood
when this weight function is used, but, we could not prove
results about the gradient approximations.

Acknowledgments

I would like to thank Nina Amenta, James O’Brien and my
advisor Jonathan Shewchuk for helpful comments. I would
also like to thank François Labelle for reading the proofs and
for pointing out an error in an earlier version of the paper.

References
[1] A. ADAMSON AND M. ALEXA, Approximating and Inter-

secting Surfaces from Points, in Proceedings of the Euro-
graphics Symposium on Geometry Processing, Eurographics
Association, 2003, pp. 230–239.

[2] M. ALEXA, J. BEHR, D. COHEN-OR, S. FLEISHMAN,
D. LEVIN, AND C. T. SILVA, Computing and Rendering
Point Set Surfaces, IEEE Transactions on Visualization and
Computer Graphics, 9 (2003), pp. 3–15.

[3] N. AMENTA AND M. BERN, Surface Reconstruction by
Voronoi Filtering, Discrete & Computational Geometry, 22
(1999), pp. 481–504.

[4] N. AMENTA, S. CHOI, T. K. DEY, AND N. LEEKHA, A
Simple Algorithm for Homeomorphic Surface Reconstruction,
International Journal of Computational Geometry and Appli-
cations, 12 (2002), pp. 125–141.

[5] N. AMENTA, S. CHOI, AND R. KOLLURI, The Power Crust,
in Proceedings of the Sixth Symposium on Solid Modeling,
Association for Computing Machinery, 2001, pp. 249–260.

[6] N. AMENTA AND Y. KIL, Defining Point-Set Surfaces, ACM
Transactions on Graphics, 23 (2004), pp. 264–270.

[7] J. BLOOMENTHAL, ed., Introduction to Implicit Surfaces,
Morgan Kaufman, 1997.

[8] J.-D. BOISSONNAT AND F. CAZALS, Smooth Surface Re-
construction via Natural Neighbour Interpolation of Distance
Functions, in Proceedings of the Sixteenth Annual Sympo-
sium on Computational geometry, ACM, 2000, pp. 223–232.

[9] , Natural Neighbor Coordinates of Points on a Sur-
face, Computational Geometry Theory and Applications, 19
(2001), pp. 155–173.

[10] J.-D. BOISSONNAT, D. COHEN-STEINER, AND G. VEG-
TER, Isotopic Implicit Surface Meshing, in Proceedings of
the Thirty-Sixth Annual ACM Symposium on Theory of
Computing, 2004, pp. 301–309.

[11] J. D. BOISSONNAT AND S. OUDOT, Provably Good Surface
Sampling and Approximation, in Proceedings of the Euro-
graphics Symposium on Geometry Processing, Eurographics
Association, 2003, pp. 9–18.

[12] J. C. CARR, R. K. BEATSON, J. B. CHERRIE, T. J.
MITCHELL, W. R. FRIGHT, B. C. MCCALLUM, AND T. R.
EVANS, Reconstruction and Representation of 3D Objects
with Radial Basis Functions, in Computer Graphics (SIG-
GRAPH 2001 Proceedings), Aug. 2001, pp. 67–76.

[13] B. CURLESS AND M. LEVOY, A Volumetric Method for
Building Complex Models from Range Images, in Computer
Graphics (SIGGRAPH ’96 Proceedings), 1996, pp. 303–312.

[14] T. K. DEY AND S. GOSWAMI, Provable Surface Reconstruc-
tion from Noisy Samples, in Proceedings of the Twentieth
Annual Symposium on Computational Geometry, Brooklyn,
New York, June 2004, Association for Computing Machinery.

[15] S. FLEISHMAN, M. ALEXA, D. COHEN-OR, AND C. T.
SILVA, Progressive Point Set Surfaces, ACM Transactions on
Computer Graphics, 22 (2003).

[16] H. HOPPE, T. DEROSE, T. DUCHAMP, J. MCDONALD, AND

W. STUETZLE, Surface Reconstruction from Unorganized
Points, in Computer Graphics (SIGGRAPH ’92 Proceedings),
1992, pp. 71–78.

[17] D. LEVIN, Mesh-Independent Surface Interpolation, in Ge-
ometric Modeling for Scientific Visualization, G. Brunett,
B. Hamann, K. Mueller, and L. Linsen, eds., Springer-Verlag,
2003.

[18] M. LEVOY, K. PULLI, B. CURLESS, S. RUSINKIEWICZ,
D. KOLLER, L. PEREIRA, M. GINZTON, S. ANDERSON,
J. DAVIS, J. GINSBERG, J. SHADE, AND D. FULK, The Dig-
ital Michelangelo Project: 3D Scanning of Large Statues, in
Computer Graphics (SIGGRAPH 2000 Proceedings), 2000,
pp. 131–144.

[19] W. E. LORENSEN AND H. E. CLINE, Marching Cubes: A
High Resolution 3D Surface Construction Algorithm, in Com-
puter Graphics (SIGGRAPH ’87 Proceedings), July 1987,
pp. 163–170.

[20] N. J. MITRA, N. GELFAND, H. POTTMANN, AND

L. GUIBAS, Registration of Point Cloud Data from a Geo-
metric Optimization Perspective, in Symposium on Geometry
Processing, 2004.

[21] N. J. MITRA, A. NGUYEN, AND L. GUIBAS, Estimating
Surface Normals in Noisy Point Cloud Data, International
Journal of Computational Geometry and Applications, 14
(2004), pp. 261–276.

[22] Y. OHTAKE, A. BELYAEV, M. ALEXA, G. TURK, AND H.-
P. SEIDEL, Multi-Level Partition of Unity Implicits, ACM
Transactions on Graphics, 22 (2003), pp. 463–470.

[23] S. OSHER AND R. FEDKIW, The Level Set Method and
Dynamic Implicit Surfaces, Springer-Verlag, New York, 2003.

[24] M. PAULY, R. KEISER, L. P. KOBBELT, AND M. GROSS,
Shape Modeling with Point-Sampled Geometry, ACM Trans.
Graph., 22 (2003), pp. 641–650.

[25] C. SHEN, J. F. O’BRIEN, AND J. R. SHEWCHUK, Interpolat-
ing and Approximating Implicit Surfaces from Polygon Soup,
ACM Transactions on Graphics, 23 (2004), pp. 896–904.

[26] G. TURK AND J. O’BRIEN, Shape Transformation Using
Variational Implicit Functions, in Computer Graphics (SIG-
GRAPH ’99 Proceedings), 1999, pp. 335–342.

[27] H.-K. ZHAO, S. OSHER, AND R. FEDKIW, Fast Surface
Reconstruction Using the Level Set Method, in First IEEE
Workshop on Variational and Level Set Methods, 2001,
pp. 194–202.

222

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Medical Applications
of Implicit Surfaces

Terry S. Yoo
Office of High Performance Computing and Communications

National Library of Medicine, NIH

Acknowledgements

• Volume Modeling
Consortium

– Bryan Morse (BYU)

– K.R. Subramanian (UNCC)

– Penny Rheingans (UMBC)

– Kathleen Hoffman (UMBC)

– David T. Chen (NLM/NIH)

– Terry S. Yoo (NLM/NIH)

• Also
– Greg Turk (GA Tech)

– James F. O’Brien (UCB)

223

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Voxel Bitmaps for modeling?

• Discrete binary voxel
maps are often used to
represent anatomical
structures.
– Sampling error leads to

misclassification

– Binary voxel maps
cannot gracefully be
rotated, translated, or
magnified.

Voxel Bitmaps for modeling?

224

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Philosophical Problem

– Modeling and representing anatomical or other medical
objects requires a respect for detail and a commitment to the
truth.

– Discrete representations lead to sampling error, aliasing.

– Under magnification, approximations become visible.

– What is an ideal modeling/interpolating primitive?
•Invariant with respect to rotation, translation, and zoom

General Problem

– Medical imaging produces discretely sampled
images or volumes.

– May want/need to have continuous surfaces fit to
those discrete points for analysis.

– Could a class of interpolants known as interpolating
(or constrained) implicit surfaces be used?

– Lots and lots of points! Too slow!

– Or is it?

225

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Outline

– Summarize methods for constrained implicit
surfaces

– Some successful results

– Examine the problem posed by large data
• Deficiencies of thin-plate splines in medical modeling

– Propose alternative radial basis functions

– Results

– Future directions

Implicit Surfaces

– Build a embedding or characteristic function.

– One connected isosurface is the implicit surface.

– Related to research in level sets.

– Not an parametric or polygonal surface representation.

226

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Medical Implicit Models
(from Turk and O’Brien 1999)

3D Reconstructions from
Intravenous Ultrasound

227

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

3D Ultrasound
Reconstruction

– Implicit surfaces using thin plate spline radial basis
functions.

– Reconstructs 3D shapes from arbitrarily oriented
segmented 2D contours.

– Thin plate splines are useful for interpolating over
large, unpredictable distances.

– Requires segmentation (easy for IVUS)

Polygonal
Reconstruction

228

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Implicit Reconstruction

Other Implications
for Ongoing Work

• Faster method means interpolating implicit
surfaces are viable for medical models
– Resampling models

– More accurate model simplification

• Local support means local effect
– Incremental updating

– Interactive modeling

229

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Current Work

– Error analysis vs. thin-plate splines

– More efficient data structures for managing spatial locality

– Other types of sparse solvers

• Using LU, could use SVD, CG, etc.

– Better ways to deal with extracting desired isosurface and
not the inner/outer hulls

– More timing studies/profiling

Current Work: Reinventing
Active Surfaces

– Implicit surfaces can interpolate 2–D segments
(unevenly sampled slices).

– Implicit Interpolating methods might provide better
(smoother, more continuous) priors to initialize
active contours and level set segmenters.

– Implicit Interpolators can be used to regularize
stacks of hand segmented slices (adapted from
Yngve &Turk).

230

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

What are Active Surfaces?

• Active Surfaces are algorithms that minimize energy to detect
object boundaries.

Traditional Active Contours

Minimize Energy Function:

ExternalInternalContour
EEE +=

• Combined Bottom-up and Top-down approach
– Original Image

– User Interaction

– Keeps contour smooth.

– Fits the image data.

Internal
E

External
E

231

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Previous Work: T-Surfaces

• Parametric approach.
• Topology adaptive through Affine Cell Image

Decomposition.

From Topology Adaptive Deformable Surfaces for Medical Image Volume Segmentation

Previous Work: Dynamic
Particles

1. Particle system discovers topological and geometric surface
structure.

2. Efficient Triangulation scheme.

From Modeling Surfaces of Arbitrary Topology with Dynamic Particles

232

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Previous Work: Level-Set

From Geodesic Active Contours

• Implicit
Representation

• Topology Adaptive
for free

• Move based on
intrinsic geometry
measures of the
image.

Previous Active Surface
Work

No User
Interaction

User
Interaction
(difficult)

User
Interaction

Topology
Adaptive

Topology
Adaptive
(with
heuristic)

Topology
Adaptive
(with special
procedure)

Level-Set

Dynamic
Particles

T-Surfaces

233

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Constraint-Based Implicits

• Implicit Representation

• Topology Adaptive for free

• Not tied to mesh

• Scattered Data Interpolation

Constraint-Based Implicit
Model
• Image Energy

• Internal Energy

• Balloon Force

• Repulsion Force

NNOGFimage)||)((|| !"#= $

NKF mmcf !=

)())(()(
iiiballoon
cNcIFcF =

!
" #

#
=

ij
ji

ji

C

vv

vv
F

i 3

Mean Curvature Flow Coulomb Force

1
2

3

4

5

iCiCicoulomb
NFNFcF

ii

)()(!"=

234

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Three-Dimensional
Extensions
• Constraint Addition

– Gram-Schmidt orthogonalization to create local
coordinate system

– Starting with

– And or or

– Calculate and

– Use combinations of u and v for placement of new
constraints

),,(zyx fffn =

)0,0,1(=i)0,1,0()1,0,0(

inu != unv !=

Three-Dimensional
Extensions
• Curvature

– Use previously discussed Gram-Schmidt orthogonalization to
create local coordinate system u and v.

– Use and

– Where H the Hessian is equal to

– Calculating mean curvature

HuuK
T

=
1

HvvK
T

=
2

!
!
!

"

#

$
$
$

%

&

=

zzyzxz

yzyyxy

xzxyxx

fff

fff

fff

H

()
2

21
kk

K
m

+
=

235

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Modified Coulomb Force
Calculation

 Original constraint-based implicit approach

Modified Coulomb Force
Calculation

!
"

#
$

$
=

ij

ji

ji

ji

C NN
vv

vv
F

i
)(

3

236

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Modified Coulomb Force
Calculation

Automatic Constraint
Addition

 Original constraint-based implicit approaches

237

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Automatic Constraint
Addition
1. Find the initial

distance between
constraints.

2. After each iteration
of evolution check to
see if any constraint
is further then the
desired distance
away from any other
constraint.

3. If the constraint is
“lonely” add four new
constraints
surrounding it.

Automatic Constraint
Addition

238

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Basic Implementation

Result

239

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Implicit Snakes
Subramanian 2003

Other Implications
for Future Work

• Faster method means interpolating implicit
surfaces are viable for medical models
– Resampling models

– More accurate model simplification

• Local support means local effect
– Incremental updating

– Interactive modeling

240

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Future Work

– Error analysis vs. thin-plate splines

– More efficient data structures for managing spatial locality

– Other types of sparse solvers

• Using LU, could use SVD, CG, etc.

– Better ways to deal with extracting desired isosurface and
not the inner/outer hulls

– More timing studies/profiling

Future Work: Reinventing
2D segmentation

– Implicit surfaces can interpolate 2–D segments
(unevenly sampled slices).

– Implicit Interpolating methods might provide better
(smoother, more continuous) priors to initialize
active contours and level set segmenters.

– Implicit Interpolators can be used to regularize
stacks of hand segmented slices (adapted from
Yngve &Turk).

241

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Implicit Snakes
Yoo and Subramanian 2001

Implicit Snakes (cont.)
Yoo and Subramanian 2001

242

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Future Work: Geometry
of Complex Models

Future: Scale Space
Study of Implicit Surfaces

243

Modern Techniques for Implic it Modeling Medical Applications of Implic it Surfaces

Conclusions

– Implicit functions interpolated with radial basis
functions are flexible and easily applied to
anatomical modeling.

– Choice of the RBF depends on application
(number of points).

– A little computer science goes a long way.

– Leads to interesting interdisciplinary work.
• computer vision, computational geometry
• computer graphics, visualization, medicine

244

Studies in Health Technology and Informatics, vol. 81
(Proceedings of Medicine Meets Virtual Reality 2001. J. D. Westwood, et al., eds.),
Amsterdam: IOS Press, pp. 594-600.

Anatomic Modeling from Unstructured
Samples Using Variational Implicit Surfaces

Terry S. Yoo1, Bryan Morse2, K.R. Subramanian3,
Penny Rheingans4, Michael J. Ackerman1

1National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA

2 Dept. of Computer Science, Brigham Young University, Provo UT 84602 USA
 3 Dept. of Computer Science, Univ. of North Carolina Charlotte, Charlotte NC 28223 USA

4Dept. of CSEE, Univ. Maryland Baltimore County, Baltimore MD 21250 USA

Abstract. We describe the use of variational implicit surfaces (level sets of an
embedded generating function modeled using radial basis interpolants) in anatomic
modeling. This technique allows the practitioner to employ sparsely and unevenly
sampled data to represent complex biological surfaces, including data acquired as a
series of non-parallel image slices. The method inherently accommodates
interpolation across irregular spans. In addition, shapes with arbitrary topology are
easily represented without interpolation or aliasing errors arising from discrete
sampling. To demonstrate the medical use of variational implicit surfaces, we
present the reconstruction of the inner surfaces of blood vessels from a series of
endovascular ultrasound images.

1. Introduction

Medical data analysis and visualization often requires the representation of known
segments or objects in an easily processed form. The primitives used for these
representations are often either a binary voxel map or a polygonal or polyhedral
representation. Each of these modeling primitives has its limitations. As a modeling
representation, voxel maps are not invariant with respect to rotation or changes in scale.
When arbitrarily rotating or scaling a binary voxel map, grey values will be introduced
near the boundary as voxels become partially covered by the rotated or scaled bitmap,
making necessary a type change from a binary-valued array to a scalar valued system. The
alternative is to enforce a binary mapping of the voxel representation, accepting the
subsequent sampling errors.

Surface representations modeled either with polygons (or with volume structuring
primitives such as tetrahedra) are invariant with respect to rotation and scale. However, if
you create a close-up view of the surface representation, the discretization of the surface
into planar primitives becomes apparent, and the viewed surface no longer closely
approximates the desired smoothness for the representation of the model. Thus although
invariant with respect to changes in scale, polygonal surface models are susceptible to
artifacts and errors in the piecewise planar approximation to smooth surfaces when scaled.

245

What is desired is a smooth representation that is easily captured from a binary
segmentation and that is invariant with respect to rotation, translation, and scale.
Moreover, it should support resampling of the surface model at any arbitrary sampling rate
to support visualization at any level of zoom or scale. We have explored the use of
variational implicit surfaces as a modeling primitive for binary anatomical objects. These
systems provide the necessary smooth differentiable surface models with the desired
properties for robust representation of complex biological structures.

2. Background and History

When viewing the 3D relationships among anatomical structures identified within medical
data, researchers often apply direct volume rendering techniques [6]. The generation of
surface models from volumetric information is an alternative to direct rendering and is also
a common practice in the visualization of anatomy. Reconstruction of piecewise planar
polygonal surface models from rectilinear volume data is frequently achieved using
computationally efficient methods such as Marching Cubes [7]. However, when either of
these techniques is applied to objects that are represented as binary bitmaps, sampling and
discretization errors arise leading to terracing and jaggies, a prominent problem in medical
imaging.

Recent work in surface fitting has addressed these issues. Gibson extracts smooth
surface models treating the existing binary data as a constraining element in an energy-
minimizing deformable surface system [4]. The resulting data structure can be used either
to create Euclidean distance maps for direct volume rendering or employed directly as a
polygonal surface model [5]. Whitaker has modified the constrained deformable surface
model to a constrained level-set model, which creates smooth models while bypassing the
need for a separate surface representation [14]. However, while these methods generate
smooth representations, both the level set model and the surface net remain discretely
sampled and retain the problem that they are not zoom invariant. A different modeling
primitive is still needed.

Turk and O’Brien adapt earlier work on thin plate splines [1][2] and radial basis
interpolants [3][10] to create a new technique in generating implicit surfaces [11]. Their
method allows direct specification of a complex surface from sparse, irregular surface
samples. The method is quite flexible and has been extended to higher dimensions to
support shape interpolation [12]. However, their technique as described cannot be used to
model surfaces where large numbers of surface points are included, making it unsuitable
for medical applications where range data or tomographic reconstruction often lead to data
described by hundreds of thousands of surface points.

3. Methods & Tools

An implicit surface is defined by {x: f(x) = k}, k ∈ ℜ, for some characteristic embedding
function f : ℜ3→ℜ. Given a set of surface points C = {c1, c2, c3, … cn}, the variational
implicit technique interpolates the smoothest possible scalar function f(x) whose zero level
set, {x: f(x) = 0}, passes through all points in C. That is, find the smoothest function f such
that f (xi) = 0 for each known surface point xi, and f (yi) = 1 for one or more points yi
known to be inside the shape. Following Turk and O’Brien’s generalization of the

246

problem, ., given a set of positions ci and corresponding values hi, solve for an embedding
function f such that f (ci) = hi. by employing radial basis interpolating functions φ(r) in a
critically constrained linear system of n equations and n unknowns. Specifically, given a
radial basis interpolating function φ (r) and a series of known points where the desired
function f is constrained to be f(ci) = hi, solve the following equation for the unknown
weights dj.

 (1)

Expanding ci = (ci
x, ci

y, ci
z), the entire linear system can be expressed as an (n+4)×(n+4)

matrix M where:

 (2)

The resulting matrix is known to be positive semi-definite, and can be solved with a linear
decomposition system. Once the weights di are found, the embedding function can be
written as:

 (3)
Depending on the differentiability of the radial basis function, φ(r), f(x) is an implicit
surface generating function that can be resampled with arbitrary precision and remains
invariant under rotation, translation, and zoom. (For most of this work, we have used the
same radial basis function, φ(r) = r3 for r ≥ 0, used by Turk and O’Brien from related
research on thin-plate splines.) If the constraints ci for f(x) are abstracted from either a
grey-level or a binary bit mask volume sampled volume, the resulting variational implicit
surface is a more compact analytical representation of the same data.

4. Results

We have applied this method to the modeling of a bovine aorta from data acquired using
an endovascular ultrasound transducer. This particular modality acquires noisy 2D image
slices, sampled at uneven intervals with non-parallel orientations. The transducer is drawn
slowly through the vessel, acquiring cross-sectional sonographic images (see Figure 1).

247

Figure 1. Cross-sectional ultrasound images of an ex-vivo bovine aorta. The slices are
acquired at angles perpendicular to the endovascular catheter path. The imaging path is
determined by the geometry of the blood vessel.

Each individual slice is then segmented, and the aggregate contours from the tilted
slices are processed to form a variational implicit surface. The resulting analytic
description can be sampled and rendered using volume rendering approaches, or it can be
interrogated and tesselated into a polygonal or parametric surface representation. Figure 2
shows the two views of the interior surface of the bovine aorta from Figure 1 reconstructed
as a variational implicit surface. The zero-set of the implicit model has been extracted
using a surface tiler, rendering them as polygons at the resolution desired for the
magnification shown. If close-up views are desired, the model can easily be re-
interrogated and tiled in the surface rendering case or the model simply re-rendered in a
direct volume rendering system with arbitrary precision, eliminating aliasing artifacts in
the representation of the model.

Figure 2. Surface renderings of the interior surfaces of the ex-vivo bovine aorta reconstructed
as a variationalimplicit surface from the ultrasound slices in Figure 1. The models are not
subject to aliasing artifacts generated by comparable surface or volume. In addition, these
models are generated from sparse, non-uniformly sampled non-parallel ultrasound slices.

5. Discussion and Future Work

The radial basis function, φ(r) = r3 for r ≥ 0, advocated by Turk and O’Brien is infinite in
extent. It has advantages when interpolating across unpredictable spans, making it ideal
for morphing and shape interpolation. However, the infinite extent leads to ill-conditioned
matrices and increased computational complexity. A naïve approach is easily order O(n3).

248

 φ(r) = r3, r ≥ 0 φ(r) = (1 – r/s)7(16(r/s)2 + 7(r/s) + 1), r < s

Figure 3. Two radial basis functions. The left function φ(r) = r3, r ≥ 0 has infinite extent.
The right function φ(r) = (1 – r/s)7(16(r/s)2 + 7(r/s) + 1) is clamped to zero outside a
specified radius of support s, and is proven to be C4 continuous. The compactly
supported function on the right leads to more stable numerics and faster solutions of the
variational implicit surface model.

In related work, we address the computational complexity of variational implicit
surface modeling. Instead of φ(r) = r3 as the underlying interpolant, we address select
from among a family of radial basis functions presented by Wendland [13] to find a
function with the necessary continuity but also with finite, compact local support. Figure 3
shows a comparison of the 3D thin-plate-spline radial basis function and the suggested
compactly supported radial basis functions of our current research. The shift from a radial
basis function of infinite extent to one that has compact local support has created dramatic
gains in memory utilization and computational complexity. Previous work described
solutions for systems of equations of order O(n3) complexity with iterative solutions
capable of achieving order O(n2). The shift to finite interpolants and sparse matrices has
shifted the bulk of the computation toward order O(n), depending on the complexity of the
model and the uniformity of the density of the surface constraints. We have measured the
complexity of the matrix solution for some test cases as O(n1.5). For more details, see
Morse [8].

The use of compactly supported radial basis functions imposes a restriction on the
maximum distance allowed between systems of surface constraints. This trade-off
between speed and the granularity of the surface samples is the topic of some of our future
research in this area. The infinite radial basis function permits interpolation across wide
spans and with arbitrary orientations to the subsets of constraints that comprise the initial
surface description. However, the costs of using this system rise with the number of points
required to faithfully represent the surface. This trade-off has ramifications in the choice
and precision of the segmentation algorithm to be used and the complexity of the objects to
be represented.

Future work on this topic includes the development of hybrid representations that
incorporate both infinite and compact radial basis functions. In addition, we will explore
advanced slice-based segmentation techniques with confidence in our ability to
interpolated smoothly between 2D segments. It should be noted that variational implicit

249

surfaces can be generated as the output of segmentation systems; however, as a means of
smoothly interpolating between sample slices, they can be used to initialize a deformable
contour for segmenting an unknown intermediate slice. The use of variational implicit
surfaces to help generate priors for segmentation systems is a current focus for some of our
group. Finally, we are investigating algorithms for the automatic generation of variational
implicit surface models for the anatomic structures currently identified as part of the
Visible Human Project (VHP) [9]. Four hundred thirty-five (435) hand-segmented
structures comprise the current segmented thorax database, with each segment modeled
using an uncompressed binary bitmask. For example, the bitmask for the heart is over 400
kilobytes, alone. We are seeking a means of automatically generating compact analytical
descriptions of these models using the techniques described here.

6. Conclusions

Given a set of surface points C = {c1, c2, c3, … cn}, the variational implicit technique
interpolates the smoothest possible scalar function f(x) whose zero level set, {x: f(x) = 0},
passes through all points in C. These surface constraints or points can be generated from a
variety of sources including segmentation systems. We show that variational implicit
surfaces can be effectively used to model anatomic structures. Earlier limitations of
computational and memory efficiency can been solved through a judicious selection of
interpolant and improved numerics. Examples including noisy data from modalities
generating curvilinear gridded data, such as endovascular ultrasound, demonstrate the
utility of this technique.

7. Acknowledgements

This work was performed in large part at the National Library of Medicine under a visiting
faculty program supporting both Dr. Morse and Dr. Subramanian. Dr. Rheingans was
supported in part by NSF CAREER Grant #9996043. We would like to thank Greg Turk
for his useful conversations and for making his code available to us, upon which our
implementation is based.

References

[1] Bookstein, F. L. 1991. Morphometric tools for landmark data. Cambridge University Press
[2] Duchon, J. 1977. Splines minimizing rotation–invariant semi-norms in Sobolev spaces, in Constructive

theory of functions of several variables, Lecture Notes in Mathematics, edited by A. Dolb and B.
Eckmann, Springer-Verlag, 1977, pp. 85–100.

[3] Floater, M. S. and A. Iske. 1996. Multistep scattered data interpolation using compactly supported
radial basis functions. J. Comp. Appl. Math. 73, pp 65-78.

[4] Gibson, S. 1998. Constrained elastic surface nets: generating smooth surfaces from binary segmented
data, in Proceedings of Medical Image Computing and Computer Assisted Interventions (MICCAI
1998)W. M. Wells, A. Colchester, and S. Delp, eds., Lecture Notes in Computer Science 1496, Springer-
Verlag, pp. 888-898.

[5] Gibson, S. 1998. Using distance maps for accurate surface representation in sampled volumes, in
Proceedings of the 1998 Symposium on Volume Visualization, ACM SIGGRAPH, pp. 23-30.

[6] Kaufman, A. Volume visualization. IEEE Computer Society Press, Los Alamitos, CA, 1991.

250

[7] Lorensen, W. and H. Cline. 1987. Marching Cubes: a high-resolution 3D surface construction
algorithm. In Proc. SIGGRAPH 87, Computer Graphics, 21(4), pp. 163-169.

[8] Morse, B., T. Yoo, P. Rheingans, D. Chen, and K.R. Subramanian. 2000. Complex Models Using
Variational Implicit Surfaces. Submitted to Shape Modeling International 2001.

[9] V. Spitzer, M. J. Ackerman, A. L. Scherzinger, and D. Whitlock. 1996. The Visible Human Male: A
Technical Report. J. of the Am. Medical Informatics Assoc. 3(2) 118-130.

[10] Szeliski, R. 1990. Fast surface interpolation using hierarchical basis functions. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(6):513-528, June 1990.

[11] Turk, G. and J. F. O'Brien. 1999. Variational implicit surfaces, Tech Report GIT-GVU-99-15, Georgia
Institute of Technology, May 1999, 9 pages.

[12] Turk, G. and J. F. O Brien. 1999. Shape transformation using variational implicit functions. Computer
Graphics Proceedings, Annual Conference Series (SIGGRAPH 99), pp. 335–342.

[13] Wendland, H. 1995. Piecewise polynomial positive definite and compactly supported radial basis
functions of minimal degree. AICM 4 (1995), pp. 389-396.

[14] Whitaker, R. 2000. Reducing Aliasing Artifacts in Iso-Surfaces of Binary Volumes. in Volume
Visualization and Graphics Symposium 2000, ACM SIGGRAPH, pp. 23-32.

251

Active Contours Using a Constraint-Based Implicit Representation

Bryan S. Morse1, Weiming Liu1 , Terry S. Yoo2, Kalpathi Subramanian3

1Department of Computer Science, Brigham Young University
2Office of High Performance Computing and Communications, National Library of Medicine

3Department of Computer Science, The University of North Carolina at Charlotte

To appear in Proceedings Computer Vision and Pattern Recognition, IEEE Computer Society Press, June 2005

Abstract

We present a new constraint-based implicit active con-

tour, which shares desirable properties of both parametric

and implicit active contours. Like parametric approaches,

their representation is compact and can be manipulated in-

teractively. Like other implicit approaches, they can natu-

rally adapt to non-simple topologies.

Unlike implicit approaches using level-set methods, rep-

resentation of the contour does not require a dense mesh.

Instead, it is based on specified on-curve and off-curve con-

straints, which are interpolated using radial basis functions.

These constraints are evolved according to specified forces

drawn from the relevant literature of both parametric and

implicit approaches.

This new type of active contour is demonstrated through

synthetic images, photographs, and medical images with

both simple and non-simple topologies. For complex in-

put, this approach produces results comparable to those of

level set or parameterized finite-element active models, but

with a compact analytic representation. As with other ac-

tive contours they can also be used for tracking, especially

for multiple objects that split or merge.

1. Introduction

Active contour models (also known as deformable con-

tours or snakes) have been used prominently throughout

computer vision since their introduction [9]. These mod-

els are iteratively updated according to various forces de-

signed to seek out object/region boundaries while main-

taining smoothness of the fitted contour, as shown in Fig-

ure 1. In this way, active contours provide a robust tool for

image segmentation: the boundary-seeking portion of the

model (external energy) provides the segmentation while

the smoothness-preserving portion (internal energy) regu-

larizes noisy data and handles missing or low-confidence

sections of the contour. Interactively controlled forces may

also be introduced to allow the user to guide the segmen-

tation. This robustness has made active contours particu-

larly popular for medical imaging applications, as surveyed

Figure 1: A constraint-based implicit active contour used

to segment the multiple disjoint parts of a vertebrae cross-

section. Although initialized as a single encompassing cir-

cle, the active contour changes its topology naturally to

adapt to the disjoint parts. The green points denote the

evolving constraints, and the red curves are the evolving

contours defined by those constraints.1

in [14]. Active contour models have also proven useful for

object tracking, both for medical imaging and other appli-

cations, because of their ability to update their position and

shape as the segmented object moves.

For many problem domains it is necessary for an active

contour to be able to adapt to non-simple topologies (as in

Figure 1). This includes situations where a single object

has holes and it is necessary for the active contour to wrap

to both the interior and exterior contours of the object; or it

might include situations where a single structure branches

as it is tracked through 2-D slices of a volumetric image,

causing two disjoint structures that need to be tracked in

subsequent slices. Without this ability to split (or, going the

other way, to merge), only one branch could be tracked.

Most implementations of active contours use paramet-

ric models, splines or other interpolants defined by a se-

quence (2-D) or mesh (3-D) of control points. Because of

their reliance on a parametric representation, simple imple-

mentations of active contours cannot adapt to non-simple

topologies. Multiple active contours can be used to segment

1This and other figures in this paper use color to convey the different

components of the active contour. If these are not distinguishable in the

printed copy, please refer to the PDF copy of this paper if available.

252

non-simple topologies, but the topology must be known and

fixed. A topologically-adaptive variation of active contours

known as T-snakes [13, 15] addresses this problem by selec-

tively splitting or merging active contours periodically, then

allowing them to continue to relax towards a solution. This

approach is effective, but the topology changes only through

periodic testing and reparameterization, not as a natural part

of the representation. Because of the parametric nature of

the representation, though, T-snakes are able to make use

of existing techniques from the parametric snake literature,

including user control.

Another approach to segmenting non-simple topologies

is to use an implicit representation. Implicit contours or sur-

faces are defined as a level set (usually the zero set) of an

embedding function whose domain is the space in which

the contour or surface is represented (usually the image

plane or volume). Because there is no explicit parameteri-

zation, implicit representations can have arbitrarily complex

topologies while still using a topologically simple embed-

ding function. Implicit active contours [3, 4, 10, 21, 30, 31]

can thus segment and track topologically non-simple ob-

jects. Implicit active contour implementations typically rep-

resent the embedding function using a dense mesh of val-

ues, often corresponding to the image’s own pixel grid.

These are then updated iteratively using level-set meth-

ods [20, 21, 22, 24, 25] so as to cause the zero set (the

curve or surface) to move as desired. The PDEs (forces)

driving the movement of the implicit curve or surface gen-

erally correspond to the traditional energy terms in paramet-

ric approaches. (See [35] for a comparison of the two ap-

proaches.) As the embedding function changes according

to these PDEs, the topology of the implicitly represented

active curve or surface can change naturally without being

explicitly tested or changed. Unlike T-snakes, this topolog-

ical adaptation occurs as a normal part of the active con-

tour’s iteration. However, implicit active contours using

dense meshes (even those using narrow-band [1, 12], fast

marching methods [25], or sparse-field methods [32]) re-

quire storage and calculation for a large number of points.

We propose a new form of implicit active contour that

uses a sparse, compact representation like parametric ap-

proaches but has the ability to adapt to complex topologies

like other implicit approaches. This is based on a relatively

new form of implicit contour representation that uses point-

based constraints (analogous to control points) to define and

control the curve or surface [2, 6, 7, 17, 19, 23, 26, 28, 29].

We call this new model a constraint-based implicit ac-

tive contour. In some ways it shares similarities with the

particle-based approach of [27] but evolves according to

surface rather than particle particles. Like other implicit

active contours, there is no finite-element representation, so

it can easily adapt to non-simple or changing topologies.

Like parametric active contours, though, the representation

is compact.

2. Constraint-Based Implicit Representations

Implicit curves or surfaces need not be represented by

dense representations. One can use sparse primitives (usu-

ally “blobby” or medial structures), which provide a much

more compact representation but don’t allow the same de-

gree of control directly over the curve or surface. One can

also use algebraic surfaces, but these quickly become too

complicated for complex surfaces unless one subdivides the

surface into patches.

Since the mid-90s, a number of techniques have emerged

using scattered data interpolation techniques (most com-

monly radial basis functions or RBFs) to interpolate im-

plicit curves, surfaces, or hypersurfaces from scattered

points and some number of additional off-curve con-

straints [2, 6, 7, 17, 19, 23, 26, 28, 29]. Since the con-

straints are directly on the curve, these techniques give a

much greater degree of control than the sum-of-primitives

approach; and since they use only a scattered set of con-

straints, they are much more compact representations than

dense meshes. These techniques have gone by various

names in the literature, including variational implicit sur-

faces when constructed as a variational problem, implicit

surfaces that interpolate, etc. We prefer the term constraint-

based implicit curve or surface due to the reliance on scat-

tered surface constraint points.

These constraint-based methods basically take the same

approach: known points on the curve define points where

the implicit curve’s embedding function should have a value

of zero, known off-curve constraints define points where

the embedding function has nonzero values, and these

(point,value) targets are then interpolated using scattered

data interpolation. Though they differ in various ways (the

interpolation used, the means of defining the off-curve con-

straints, and the tolerance of fitting the points), they all share

this key idea: rather than explicitly interpolating the curve

or surface, they interpolate the embedding function that im-

plicitly defines it.

An example of this is shown in Figure 2. Zero-valued

constraints define the curve and nonzero-valued constraints

are uniformly distributed around the perimeter of the image.

The scattered (point,value) pairs constraining the implicit

curve or surface are then interpolated using radial basis

functions (RBFs) as follows.2

We begin with a set of constraints (ci, hi) such that hi =
0 for all ci on the curve and hi = 1 for all ci known to

2We follow most closely the general approach outlined in [29] and used

in [17], [6], and related works. The description of the process here is

intentionally brief, and we encourage the interested reader to consult these

more detailed descriptions.

253

Figure 2: A constraint-based implicit active contour. As

the constraints defining the contour evolve towards the ob-

ject boundaries (top), the contour separates into two parts,

occurring naturally as part of its underlying implicit rep-

resentation (bottom). For visualization, we here show the

absolute value of that embedding function, which may best

be interpreted as an approximate distance field.

lie away from the curve. We then interpolate an embedding

function f from these constraints such that ∀i : f(ci) = hi.

We can obtain this interpolation using an RBF φ(r) by

defining the embedding function f as a weighted sum of

these basis functions centered at each of the constraint po-

sitions, plus possibly an additional polynomial p (required

for some basis functions):

φ(x) =
n∑

i=1

diφ(‖x− ci‖) + p(x) (1)

where ci is the position of the constraint and di is the weight

of the radial basis function positioned at that point.

To solve for the set of weights di that satisfy the known

constraints f(ci) = hi, we substitute each constraint

(ci, hi) into Eq. 1:

φ(ci) =
n∑

j=1

djφ(‖ci − cj‖) + p(x) = hi (2)

Eq. 2 thus defines a system of equations for solving for the

weights in Eq. 1, which can now be used as an embedding

function implicitly defining a smooth curve passing through

the known constraints.

Constraint-based implicit curves or surfaces have al-

ready demonstrated themselves to be valuable for shape

modeling [29], shape interpolation [28], surface reconstruc-

tion [2, 6], and medical imaging [36].

3. Constraint-Based Implicit Active Contours

We propose that constraint-based implicit curves or

surfaces also provide an implicit representation suitable

for implicit active contours. This representation is much

more compact than previous dense-mesh or volumetric ap-

proaches. It can be stored using only the constraint points

and the results of solving for the weights in Eq. 2, and the

embedding function implicitly defining the curve or surface

can be reconstituted analytically using Eq. 1.

3.1. Basic Formulation

As with all active contour algorithms, we initialize the

active contour based on an initial estimate of the object’s

shape and position. This could be based on an anatomical

atlas, the results of segmenting a previous slice or frame, or

simply a standard starting point such as a simple circle.

We place along an approximate initial curve a number of

zero-valued constraints as described in Section 2. We also

place along the image border a number of nonzero-valued

constraints to define the exterior of the object. (These points

could be placed arbitrarily distant from the center of the

image, but we have chosen to include them in the image so

that they may be better visualized.) We then solve the sys-

tem of equations required for the RBF interpolation (Eq. 2)

in order to build the embedding function φ that implicitly

defines our initial active contour.

We then adjust our curve constraints according to a num-

ber of energy functionals designed to move the contour to-

wards the desired solution. (The nonzero constraints remain

as a bounding box or circle around the object and are not

updated.) A similar approach to evolving constraint-based

implicit surfaces can also be found in [18].

For the basic implementation, we use an external image

force Fimage, an internal smoothing force Finternal, a bal-

loon force Fballoon, and an internal constraint repulsion force

Frepulse. Together, these forces drive the evolution of the

constraints:

∂
∂t

ci = wimage Fimage(ci)
+ winternal Finternal(ci)
+ wballoon Fballoon(ci)
+ wrepulse Frepulse(ci)

(3)

254

The weights of these forces (wimage, winternal, wballoon, and

wrepulse, respectively) may be adjusted to control the relative

importance of each component.

Another approach, rather than using separate external

image and balloon forces to drive motion, borrows a tech-

nique from the level-set implicit snake literature [3]. This

approach uses a balloon force to externally drive the motion,

the internal force to induce smoothness, and a boundary po-

tential “stopping function”:

∂
∂t

ci = g(ci) [winternalFinternal(ci) + wballoonFballoon(ci)]
+ wrepulseFrepulse(ci)

(4)

where the stopping function g(ci) is a function of the image

boundary potential ranging in value from 1 (no external

force, let the balloon and internal forces drive the motion)

to 0 (on a boundary, stop).

These individual forces are defined as follows, specifi-

cally as in Eq. 5 through Eq. 9.

Image Energy Force

As in parametric active contour models, we define an image

boundary potential function P (x) that is low for points with

high boundary-like properties. We then define one of the

terms driving the motion of the constraints as the negative

gradient of this potential:

Fimage = − ∇P

Moving the constraints only along the normal to the im-

plicit curve (as effectively done by level-set based implicit

active contour algorithms) gives a more effective constraint

motion. Denoting the curve’s normal as

N =
∇φ

‖∇φ‖

this becomes

Fimage = − (∇P · N) N (5)

We can use any of the external energy functionals in the

existing literature for parametric snakes and have imple-

mented such variants as gradient vector flow [34].

Internal Energy Force

For the internal energy term, we borrow not from para-

metric active contours but from their implicit counterparts.

Implicit active contours use differential geometry and the

derivatives of the embedding function to calculate the cur-

vature of the level set representing the curve. Using level-

set methods, the embedding function is then adjusted so as

to reduce the curvature of the implicitly represented curve

(mean curvature flow).

We also measure the curvature of the active contour

by using differential geometry to calculate the curvature

κ = div ∇φ
|∇φ| of the level set passing through each constraint

along the curve. We then explicitly move each constraint in

the direction of the curve’s local normal at a rate propor-

tional to the negative of the local curvature:

Finternal = − κ N (6)

Balloon Force

Balloon forces can be used to make the active contour work

like a balloon: expanding when inside the shape boundaries

and shrinking when outside the shape boundaries in the nor-

mal direction of the curve [5, 3, 16].

The motion due to the balloon force Fballoon(ci) at con-

straint i can be expressed as

Fballoon(ci) = F (I(ci)) N(ci) (7)

For images whose shape regions have different intensity

from the background and can be segmented using a simple

threshold T , F (I(c)) is simply ±1 depending on whether

the image intensity I(c) is above or below threshold.

For more complex distributions of intensities in the

image, we can use information about the region intensity

statistics [8]. Assuming that the shape regions have in-

tensity mean µ and standard deviation σ, and k is a user-

adjustable constant, F (I(c)) can be designed as

F (I(c)) =
{

+1 if |I(c) − µ| ≤ kσ,

−1 otherwise
(8)

The constraint-based implicit representation makes it

easy to determine the statistics of the enclosed region(s),

because the embedding function acts as a characteristic

object-membership function for all pixels in the image.

Constraint Repulsion Force

To encourage uniform distribution of the constraints along

a contour, we add an additional motion term that acts to

push constraint points apart and leads to roughly uniform

spacing [33]. We model this energy term after electrostatic

potential between charged particles. If we think of on-curve

constraints as unit positive charged particles and ignore mo-

mentum, the combined repulsive force on the ith constraint

due to other constraints is

Frepulse(ci) =
∑
j 6=i

ci − cj

‖ci − cj‖3

Since the repulsive force becomes unstable as the dis-

tance between the points becomes very small, we can also

approximate this using a Gaussian-based function of the

distance as in [33].

255

To avoid this repulsive force acting as a secondary bal-

looning force, we constrain the effect of the repulsion to be

only in the tangent to the curve (N⊥). To avoid interaction

between disjoint curves once the topology changes, we also

weight the repulsive force between two points by the simi-

larity between the normals at those points:

Frepulse(ci) =
X

j 6=i

»

wij

(ci − cj)

‖ci − cj‖
3
· N⊥(ci)

–

N⊥(ci) (9)

where wij = 1
2 [1 + (N(ci) · N(cj))].

3.2 Implementation

We implement the basic constraint-based implicit active

contour algorithm as follows:

1. Preprocess the original image by blurring with a Gaus-

sian to reduce noise, make edges cleaner, and increase

the capture range for the active contour.

2. Select a set of initial constraints around the shape of

interest. This may be done by having the user supply

an initial estimate of the contour; or they may be drawn

from a prior model of the shape or from a previous

slice or frame.

3. Construct an embedding function from these con-

straints using thin-plate spline radial basis functions

and the methods described in Section 2. Generally it

is better to select constraints near the desired bound-

aries, which then require fewer iterations to find the

final boundaries. However, our model also allows the

user to select constraints farther away from the bound-

aries.

4. Evolve the constraints according to Eq. 3 or Eq. 4 for

5–10 time steps. During this process, we use the same

embedding function because it changes little.

5. Reconstruct the embedding function from the changed

constraints after each set of 5–10 time steps using an

incremental solver (an iterative solver that uses the pre-

vious solution as a starting point).

6. Stop evolving when the active contour reaches object

boundaries and converges.

At no time during the algorithm do we need to extract the

contour from its implicit representation or to otherwise use

any form of finite-element, spline, or other explicit repre-

sentation. (In our implementation we do so only to provide

visualization of the intermediate steps of the evolution.)

A direct solver can be used for Step 5, but using an in-

cremental solver takes advantage of the RBF weights calcu-

lated for the previous embedding function, usually converg-

ing to the new solution within only a few iterations.

We use a base time step of ∆t0 = 1
max(winternal,wballoon)

.

We then conservatively select a time step so as to limit the

motion of a single constraint to be no more than one pixel:

∆t = ∆t0
maxi ‖c

+∆t

i
−c

t

i
‖

.

3.3. Enhancements

Inserting and Deleting Constraints

Many snake implementations insert additional constraints

as the curve expands. Although we have no explicit pa-

rameterization, we can likewise insert or delete constraints

by recognizing when a constraint becomes too far from

or too close to nearby constraints [33]. This pairwise

constraint-to-constraint distance calculation requires no ad-

ditional computation because it is already part of the RBF

calculations. If the minimum distance from one constraint

to all other constraints exceeds a predetermined threshold,

we split that constraint into two new constraints placed at a

small offset in the curve’s tangent direction from the origi-

nal. If the minimum distance becomes too small, we merge

those constraints. This is useful in avoiding instabilities in

the repulsive forces when collapsing to a small object.

User Interaction

As with the original snake implementation [9], we can also

introduce “springs”: user-defined forces to pull a specific

constraint (ci) towards a goal (a):

Fspring = (a − ci)p

for some exponent p, or to push them all away from that

point (“volcanos”):

Fvolcano =
1

‖a− ci‖
3 [(ci − a) · N(ci)] N(ci)

See Figure 7 for an example of the application of user inter-

action to snake evolution.

Automatic Constraint Addition

In some cases, the user may wish to indicate that the snake

is missing a significant part of the object (or because of the

topological flexibility, a disjoint part). This can be accom-

plished by adding new constraints, which can be placed au-

tomatically by finding points in the image where both the

object boundary likelihood and the distance from the cur-

rent snake is high. Using the negative of the boundary po-

tential −P (x) and recognizing that the embedding function

can serve as a pseudo-distance field, we can define this as

the point that maximizes −P (x) |φ(x)|.
In our implementation, we found that a pseudo-distance

field is better created by non-zero constraints placed at a

fixed offset from the zero-valued constraints [2]. Since we

do not do this during normal snake evolution, we do so only

when asked to automatically add new constraints.

256

4. Results

Figures 3–4 show results for simple synthetic images in

order to demonstrate how constraint-based implicit snakes

work. Figure 3 shows a single contour adapting to multi-

ple disjoint objects, and Figure 4 shows several initial con-

tours merging to segment the separate interior and exterior

boundaries of a hollow shape.

Figure 1 and Figures 5–8 show the use of constraint-

based implicit active contours to segment various types

of medical images. Figure 1 shows how the contour can

change topology to adapt to multiple disjoint pieces of an

object. Figures 5–7 show how even in situations with simple

topology, constraint-based implicit active contours perform

in ways comparable to both parametric or level-set based

methods. Figure 7 also demonstrates user interaction to di-

rect the contour away from an interfering nearby bound-

ary. Figure 8 shows a complex branching (though topologi-

cally simple) shape, which can be segmented using a single

constraint-based implicit active contour through the use of

automatic point insertion as the contour grows.

Finally, Figures 9–10 show how constraint-based im-

plicit snakes can be used to track objects in video sequences.

In each, the result for one frame is used as the initial es-

timate for the following frame. In particular, Figure 10

demonstrates tracking multiple objects as they merge and

later separate.

5. Conclusion

We have presented a new approach to topology-adaptive

active contours using a constraint-based implicit represen-

tation. Like parametric active contours, the representation

uses only a sparse number of points on the contour. Like

other implicit active contours, topological changes happen

naturally as part of their implicit representation. These

new constraint-based implicit active contours thus com-

bine the best features of both implicit approaches (natu-

rally topology-adaptive) and parametric approaches (com-

pact representations, user interaction).

Examples have been shown for simple synthetic images,

photographs, medical images, and video sequences. These

examples show that in cases of simple topology, constraint-

based implicit active contours perform in ways compara-

ble to either parametric or level-set based approaches. In

cases with more complex topologies, constraint-based im-

plicit active contours adapt naturally to the topology in ways

comparable to level-set based methods or T-snakes. How-

ever, the representation requires neither the dense mesh re-

quired for level-set methods nor the ACID node structure

required for T-snakes. The representation is compact and

can be analytically defined by simply listing the (unordered)

constraints that evolve to localize the object.

Figure 3: Synthetic image with one initial contour and six

disjoint targets. As the contour evolves, it breaks naturally

into multiple disjoint curves.

Figure 4: Six initial contours merging to form two contours,

one each for the interior and exterior boundaries.

Figure 5: Segmentation of the left-ventricular chamber of

the heart (LV) in an ultrasound image.

257

Figure 6: Segmentation of a tumor in a slice of an MRI

using a constraint-based implicit active contour.

Figure 7: Segmentation of the corpus callosum. A user-

defined “spring” (indicated with a red dot for the anchor)

is placed interactively to correctively pull the contour away

from a nearby boundary.

Figure 8: Segmentation of a blood vessel with complex

branching structure. Although initialized with a small cir-

cle in the interior of the vessel, the active contour expands

to segment the entire structure. As the contour expands, ad-

ditional constraints are inserted automatically even though

there is no parameterization or even ordering of the points.

Figure 9: Using constraint-based implicit active contours

to track a car in a traffic sequence. As is commonly done,

the active contour for each frame was initialized using the

results of the previous frame.

Figure 10: Constraint-based implicit active contour track-

ing multiple objects through a synthetic motion sequence

(top-to-bottom, left-to-right). As the objects approach each

other and combine, their respective active contours merge

implicitly. As the objects later separate again, their respec-

tive active contours also implicitly separate.

258

Acknowledgments

We would like to thank Lauralea Otis, David Chen, and

Tom Sederberg for their help with this work. We would

also like to thank Greg Turk, James O’Brien, Quynh Dinh,

Ross Whitaker, and John Hart for their useful discussions

regarding implicit surface modeling.

References

[1] D. Adalsteinsson and J. Sethian. A fast level set method for propa-

gating interfaces. J. Computational Physics, 118:269–277, 1995.

[2] J. C. Carr, T. J. Mitchell, R. K. Beatson, J. B. Cherrie, W. R. Fright,

B. C. McCallum, and T. R. Evans. Reconstruction and representation

of 3D objects with radial basis. In SIGGRAPH 2001 Proceedings,

Annual Conference Series. ACM SIGGRAPH, ACM Press, August

2001.

[3] V. Caselles, F. Catté, B. Coll, and F. Dibos. A geometric model for

active contours in image processing. Numerische Mathematik, 66(1),

1993.

[4] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours.

In In Proc. Fifth International Conf. on Computer Vision (ICCV’95),

pages 694–699, Los Alamitos, CA, June 1995. IEEE Computer So-

ciety Press.

[5] L. D. Cohen. On active contour models and balloons. CVGIP: Image

Understanding, 56(2):242–263, 1991.

[6] H. Dinh, G. Turk, and G. Slabaugh. Reconstructing surfaces by volu-

metric regularization using radial basis functions. IEEE Transactions

on Pattern Analysis and Machine Intelligence, October 2002.

[7] H. Q. Dinh, G. Turk, and G. Slabaugh. Reconstructing surfaces us-

ing anisotropic basis functions. In Proceedings Eighth International

Conference on Computer Vision (ICCV 2001), 2001.

[8] J. Ivins and J. Porrill. Statistical snakes: Active region models. In

Proceedings Fifth British Machine Vision Conference (BMVC’04),

pages 377–386, 1994.

[9] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour

models. International Journal of Computer Vision, 1(4):321–331,

1987.

[10] S. Kichenassamy, A. Kumar, P. Older, A. Tannenbaum, and A. Yezzi.

Gradient flows and geometric active contour models. In In Proc. Fifth

International Conf. on Computer Vision (ICCV’95), pages 810–815,

Los Alamitos, CA, June 1995. IEEE Computer Society Press.

[11] W. Liu. Constraint-based implicit snakes using thin-plate spline ra-

dial basis functions. Master’s thesis, Brigham Young University,

April 2004.

[12] R. Malladi, J. Sethian, and B. C. Vemuri. Shape modeling with front

propogation: a level-set approach. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 17(2):158–175, Feb. 1995.

[13] T. McInerney and D. Terzopoulos. Topologically adaptable snakes.

In Proceedings Fifth International Conference on Computer Vision,

pages 840–845. IEEE Computer Society Press, June 1995.

[14] T. McInerney and D. Terzopoulos. Deformable models in medical

image analysis: a survey. Medical Imaging Analysis, 1(2), 1996.

[15] T. McInerney and D. Terzopoulos. Topologically adaptive de-

formable surfaces for medical image volume segmentation. IEEE

Trans. Medical Imaging, 20:100–111, 1996.

[16] T. McInerney and D. Terzopoulos. T-snakes: Topology adaptive

snakes. Medical Image Analysis, 4:73–91, 2000.

[17] B. S. Morse, T. S. Yoo, D. T. Chen, P. Rheingans, and K. R. Subra-

manian. Interpolating implicit surfaces from scattered surface data

using compactly supported radial basis functions. In Proceedings

Shape Modeling International, 2001.

[18] M. Mullan, R. Whitaker, and J. Hart. Procedural level sets. Presented

at the NSF/DARPA CARGO meeting, May 2004.

[19] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multi-

level partition of unity implicits. In Proceedings 2003 SIGGRAPH,

Annual Conference Series. ACM SIGGRAPH, ACM Press, 2003.

[20] S. Osher and R. Fedkiw. Level-Set Methods and Dynamic Implicit

Surfaces. Springer-Verlag New York, Inc., 2003.

[21] S. Osher and N. Paragios. Geometric Level Set Methods in Imaging,

Vision, and Graphics. Springer-Verlag New York, Inc., 2003.

[22] S. Osher and J. A. Sethian. Fronts propogating with curvature de-

pendent speed: Algorithms based on Hamilton-Jacobi formulation.

J. Comput. Phys., 79:12–49, 1988.

[23] V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Kunii.

Function representation of solids reconstructed from scattered sur-

face points and contours. Computer Graphics Forum, 14(4):181–

188, 1995.

[24] J. A. Sethian. Level Set Methods. Cambridge University Press, 1996.

[25] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cam-

bridge University Press, 1999.

[26] C. Shen, J. F. O’Brien, and J. R. Shewchuk. Interpolating and approx-

imating implicit surfaces from polygon soup. In Proceedings 2004

SIGGRAPH, Annual Conference Series. ACM SIGGRAPH, ACM

Press, 2004.

[27] R. Szeliski, D. Tonnesen, and D. Terzopoulos. Modeling surfaces

of arbitrary topology with dynamic particles. In Proceedings Com-

puter Vision and Pattern Recognition (CVPR). IEEE Computer Soci-

ety Press, 1993.

[28] G. Turk and J. F. O’Brien. Shape transformation using variational

implicit surfaces. In SIGGRAPH ’99 Proceedings, Annual Confer-

ence Series. ACM SIGGRAPH, ACM Press, 1999.

[29] G. Turk and J. F. O’Brien. Modelling with implicit surfaces that

interpolate. ACM Transactions on Graphics, 21(4):855–873, October

2002.

[30] J. Weickert and G. Kühne. Fast methods for implicit active contour

models. In S. Osher and N. Paragios, editors, Geometric Level Set

Methods in Imaging, Vision, and Graphics, pages 43–77. Springer-

Verlag New York, Inc., NY: New York, 2003.

[31] R. Whitaker. Volumetric deformable models: active blobs. In

R. Robb, editor, Visualization in Biomedical Computing, pages 122–

134, November 1994.

[32] R. T. Whitaker. A level-set approach to 3D reconstruction from range

data. International Journel of Comp. Vision, 10(3):203–231, 1998.

[33] A. P. Witkin and P. S. Heckbert. Using particles to sample and con-

trol implicit surfaces. Computer Graphics, 28(Annual Conference

Series):269–277, 1994.

[34] C. Xu and J. L. Prince. Snakes, shapes, and gradient vector flow.

IEEE Trans. on Image processing, 7(3):359–369, 1998.

[35] C. Xu, A. Yezzi, and J. Prince. A summary of geometric level-set

analogues for a general class of parametric active contour and surface

models. In Proc. of 1st IEEE Workshop on Variational and Level Set

Methods in Computer Vision, pages 104–111, July 2001.

[36] T. S. Yoo, B. S. Morse, K. R. Subramanian, P. Rheingans, and M. J.

Ackerman. Anatomic modeling from unstructured samples using

variational implicit surfaces. In Proceedings of Medicine Meets Vir-

tual Reality (MMVR 2001), Jan. 2001.

259

Using Particles to Sample and Control
Implicit Surfaces

Andrew P. Witkin
Paul S. Heckbert

Department of Computer Science
Carnegie Mellon University

Abstract
We present a new particle-based approach to sampling and con-

trolling implicit surfaces. A simple constraint locks a set of particles
onto a surface while the particles and the surface move. We use the
constraint to make surfaces follow particles, and to make particles
follow surfaces. We implementcontrol pointsfor direct manipula-
tion by specifying particle motions, then solving for surface motion
that maintains the constraint. For sampling and rendering, we run the
constraint in the other direction, creatingfloaterparticles that roam
freely over the surface. Local repulsion is used to make floaters
spread evenly across the surface. By varying the radius of repulsion
adaptively, and fissioning or killing particles based on the local den-
sity, we can achieve good sampling distributions very rapidly, and
maintain them even in the face of rapid and extreme deformations
and changes in surface topology.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling:Curve, surface, solid, and object rep-
resentations, Physically based modeling;I.3.6 [Computer Graph-
ics]: Methodologies and Techniques:Interaction techniques;G.1.6
[Numerical Analysis]: Optimization:Constrained Optimization.

General Terms: algorithms, design.

Additional Key Words and Phrases: physically based modeling,
constrained optimization, adaptive sampling, interaction.

1 Introduction
Implicit surfaces have proven to be useful for modeling, ani-

mation, and visualization. One appeal of implicit models is that
new surfaces can be created by adding or otherwise combining the
functions that define them, producing a variety of subtle and inter-
esting shape effects. Another is their role in the visualization of
volume data. In addition, the implicit representation lends itself to
such calculations as ray/surface intersection and inside/outside test.
However, implicit surfaces suffer from two serious drawbacks: first,
although well suited to ray tracing, they are not easily rendered at in-
teractive speeds, reflecting the underlying problem that it is difficult
to samplethem systematically. This is particularly a problem if we
wish to render time-varying surfaces in real time, which is vital for
interactive sculpting. Second, the shapes of implicit surfaces have
proven to be more difficult to specify and control than those of their
parametric counterparts.

Mail to the authors should be addressed to the Department of Computer
Science, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh PA 15213,
USA. Email should be addressed to Andrew Witkin asaw@cs.cmu.edu, and
to Paul Heckbert asph@cs.cmu.edu.
c©1994 ACM. Reprinted fromComputer Graphics, Proc. SIGGRPAH ’94.

In this paper, we present a new particle-based approach to sam-
pling and shape control of implicit surfaces that addresses these
problems. At the heart of our approach is a simple constraint that
locks a collection of particles onto an implicit surface while both
the particles and the surface move. We can use the constraint to
make the surface follow the particles, or to make the particles follow
the surface. Our formulation is differential: we specify and solve
for velocities rather than positions, and the behavior of the system
is governed by differential equations that integrate these velocities
over time.

We control surface shape by moving particles interactively, solv-
ing for surface motion that keeps the particles on the surface. This
technique lets us pin down the surface at some points while inter-
actively dragging others. These particles act ascontrol pointsfor
direct manipulation of the surface.

For sampling and rendering, we run the constraint in the other
direction, creating particles that may roam freely over the surface,
but are compelled to follow it as it moves. We call these particles
floaters.Our starting point is the idea that uniform sampling density
can be achieved by making the particles repel each other. This
approach was used by Turk [29] to resample polygon meshes, and
by Figueiredoet al. [12] to sample implicit surfaces.

Simple repulsion can work quite well for stationary surfaces, but
only if a reasonably good initial sampling is available. If large-
scale non-uniformities exist, convergence can be extremely slow
for even moderate sampling densities. We eliminate the need for
a good starting point, and dramatically accelerate convergence, by
employing an iterative “fissioning” approach, in which we start with
a small number of particles and a large radius of repulsion, allow
them to equilibrate, then split each particle in two, reducing the
radius of repulsion. We repeat the process until the desired sampling
density is reached. Each level thus inherits a distribution that is
already uniform at large scale, requiring just a few iterations to iron
out the local irregularities.

Global fissioning still fails to handle surfaces that move and de-
form, since irregularities can arise after the density becomes high.
We introduce a local adaptive repulsion algorithm, in which the re-
pulsion radius and particle birth and death are regulated based on
local density. This method is fast enough to maintain good sampling
even in the face of rapid and extreme surface motion and deforma-
tion.

The remainder of the paper is organized as follows: we begin
by discussing previous related work. Then we introduce the basic
constraint mechanism that attaches particles to surfaces. Next we
describe the use of particles for surface shape control. We then
explain our adaptive repulsion sampling algorithm. After describing
the implementation and results, we conclude with a discussion of
future work.

260

2 Previous Work
Related work can be divided into two categories: sampling meth-

ods and control methods.

2.1 Sampling Methods
Related research on surface sampling includes both particle-based

sampling techniques and polygonization techniques for implicit sur-
faces.

Turk used repelling particles on surfaces to uniformly resample
a static surface [28] and to simplify a polygonization by reducing
the number of polygons [29]. Hoppeet al. also explored mesh
simplification, framing it as an optimization problem with penalties
for geometric error, number of samples, and edge length [16]. Their
method did not restrict the points to a surface, however, as Turk’s
and ours do.

Szeliski and Tonnesen used oriented particles to model surfaces
[27]. Their technique allowed the user to move the particles interac-
tively, employing short-range repulsion and long-range attraction to
keep the particles from clumping or flying apart. The system gen-
erated a surface by connecting neighboring particles appropriately,
but it did not manipulate a high level representation for a surface,
such as a parametric patch or an implicit function, as ours does. The
output of their system was a triangulation. Their system bears a su-
perficial resemblance to ours because we both use disks to visualize
the surface, but in other respects our techniques are quite different.

An implicit surface, also called an iso-surface, is the set of points
x that satisfyF(x) = 0. Implicit surfaces are typically defined by
starting with simple building block functions and by creating new
implicit functions using the sum, min, or max of simpler functions.
When the building blocks are polynomials inx, y, andz, the resulting
surfaces are calledalgebraic surfaces, and when the building blocks
are spherical Gaussian functions, the surfaces are calledblobbies[8],
“soft objects”, or “metaballs”. The use of sums of implicit functions
allows blend surfaces to be created [24], and the use of min and max
yields the union and intersection of solid objects.

Rendering an implicit surface is often difficult. If a ray tracer
is used, intersecting a ray with an implicit surface reduces to one-
dimensional root-finding, but this can be very slow for a complex
implicit function [8]. To exploit the speed of graphics hardware,
we would prefer to render using a z-buffer algorithm. This requires
converting the implicit surface into polygons or other parametric
surfaces.

Most existing methods for polygonizing implicit surfaces sub-
divide space into a uniform grid of cubical or tetrahedral voxels,
sample the function at the vertices of the voxels, and then, for each
voxel whose vertices are not all in or all out, generate polygon(s) ap-
proximating the surface [33,18,21,10]. This approach is often called
themarching cubesalgorithm. Improvements on this algorithm use
adaptive subdivision based on curvature [9]. Unfortunately, all of
these algorithms will miss small surface features if the initial sam-
pling grid is too coarse, except Snyder’s, which uses interval arith-
metic to guarantee that the topology of the polygonization matches
the topology of the real surface [26].

These polygonization algorithms were designed for static sur-
faces; to polygonize a changing surface with them would require
beginning from scratch each time. The algorithm of Jevanset al. is
an exception. It re-polygonizes only those voxels that change [17].

Physically-based approaches to the polygonization of implicit
surfaces were pioneered by Figueiredoet al. [12]. One of the two
methods they describe starts with particles randomly scattered in
3-D space, subjects them to forces that pull them to the surface
(an idea proposed in [11]), and uses repulsion between particles to
distribute them uniformly over the surface. Their technique uses

penalty methods, however, which lead to stiff differential equations
whose solution is generally either slow to repel into a nice pattern, or
inaccurate at staying on the surface. Once the particles have reached
equilibrium, a polygonization is found using Delaunay triangulation.
Their work resembles ours most closely, but our simulation method
differs from theirs, and our technique supports interactive control
of surfaces and incremental sampling of changing surfaces, while
theirs does not.

2.2 Control Methods
One of the principal disadvantages of implicit modeling relative

to parametric modeling is the difficulty of controlling the shape of
an implicit surface [11]. The effect of the parameters of an implicit
surface is often non-intuitive.

With algebraic surfaces, for instance, it is hard to predict the sur-
face shape given its coefficients. Modeling is further complicated by
the global nature of an algebraic surface’s polynomial basis func-
tions, which prevent local shape control. For these reasons and
others, piecewise algebraic surfaces have recently become popu-
lar [25]. Piecewise algebraic surfaces are typically defined by a
weighted sum of Bernstein polynomials over a lattice of tetrahe-
dra. Least squares methods for fitting surfaces to a set of points are
available both for standard algebraic surfaces [22] and for piecewise
algebraic surfaces [1]. Pratt’s algorithm can fit a surface withm pa-
rameters ton points (n > m) in timeO((n+m)m2). These methods
are limited to algebraic surfaces, however.

Blobby models employ local basis functions, so they are often
more intuitive to work with than algebraic surfaces [8]. In an inter-
active blobby modeling system, a user might use dials or sliders to
adjust the position and radius of each blobby center [7], but arriv-
ing at a desired surface is a matter of guesswork, and the real time
display is typically just a wireframe, with a higher quality rendering
requiring off-line ray tracing or polygonization. Some recent work
has fit blobby models to a set of surface points, but the method is
quite slow, one example requiring days of computer time to fit 2900
control points using 1200 parameters [20]. Direct manipulation of a
blobby surface at interactive speeds has remained an open problem.

The differential methods we use to constrain the motion of par-
ticles and surfaces are rooted in classical mechanics (see, e.g. [15]
for a discussion of mechanical constraints and constraint forces) and
are closely related to constraint methods used in physically based
modeling for computer graphics [5,2,3,32,31,4]. Allied methods
have also been used for interactive geometric modeling [30,14].

3 The Particle/Surface Constraint
In this section we derive the basic machinery that allows us to

attach moving particles to moving surfaces. First we derive a ba-
sic constraint on particle and surface velocities that establishes, then
maintains contact as the system evolves over time. We then pose two
related problems: solve for particle velocities given time derivatives
of the surface parameters, and solve for surface derivatives given
particle velocities. Since the problem will generally be undercon-
strained, we express it as a constrained optimization.

Notation: We use boldface to denote vectors, and italics for
scalars. Subscripts denote partial differentiation. Superscripti or j
denote thei th or j th member of a collection of objects. E.g.pi is
the i th in a collection of vectors, andFx is the derivative of scalar
F with respect to vectorx, hence a vector. Superscripts other than
i or j have their usual meaning as exponents, e.g.|x − c|2 or e−x2

.
A dot, as inq̇, denotes a derivative with respect to time.

c©1994 ACM 2 Computer Graphics, Proc. SIGGRPAH ’94.

261

3.1 The Basic Constraint

We represent the moving implicit surface byF(x, q(t)) = 0,
wherex is position in space, andq(t) is a vector ofm time-varying
shape parameters. For example, an implicit sphere could be defined
by F = |x − c|2 − r 2, with centerc and radiusr . The parameter
vectorq would then be the 4-vector [cx, cy, cz, r].

The condition that a collection ofn moving particles lie on the
surface is

F(pi (t), q(t)) = 0, 1 ≤ i ≤ n, (1)

wherepi (t) is the trajectory of thei th particle. In order for this
condition to be met from some initial timet0 onward, it suffices
that equation 1 is satisfied att0, and that the time derivativėF =
0 thereafter. Since we want to manipulate velocities rather than
positions, we obtain an expression forḞ using the chain rule:

Ḟ i = Fi
x · ṗi + Fi

q · q̇, (2)

where Ḟ i , Fi
x, andFi

q denoteḞ , Fx, andFq evaluated atpi . By

settingḞ i to zero in equation 2, we obtainn linear constraints on the
ṗi s and oṅq. In principle, if we began with a valid state and ensured
that these conditions were met at every instant thereafter, we would
be guaranteed that the particles remained on the surface. In practice,
we might not have valid initial conditions, and numerical integration
errors would cause drift over time. We cure these problems using
a feedback term [6], settinġFi = −φFi , whereφ is a feedback
constant. This yields the set ofn linear constraint equations

Ci (pi , ṗi , q, q̇) = Fi
x · ṗi + Fi

q · q̇ + φFi = 0 (3)

3.2 Constrained Optimization
We employ these constraints in two ways: first, in order to use

particles to move the surface, we solve forq̇ given theṗi ’s. Second,
to use mutually repelling particles to sample the surface, we solve
for the ṗi ’s given q̇. In either case, we generally wish to solve un-
derconstrained systems. To do so we minimize a quadratic function
of ṗi and q̇, subject to the constraints. The objective function we
use here is

G = 1

2

n∑
i =1

|ṗi − P i |2 + 1

2
|q̇ − Q|2,

whereP i andQ are knowndesiredvalues forṗi andq̇ respectively.1

These desired values can be used in a variety of ways. SettingP i to
zero minimizes particle velocities. SettingQ to zero minimizes the
surface’s parametric time derivative.

In unconstrained optimization we require that the gradient of
the objective function vanish. At aconstrainedminimum, we re-
quire instead that the gradient of the objective function be a linear
combination of the gradients of the constraint functions [13]. This
condition ensures that no further local improvement can be made
without violating the constraints. In the case of a point constrained
to a surface, this condition is easily visualized: the gradient of the
objective function must lie normal to the surface, so that its orthog-
onal projection onto the tangent plane vanishes. Though harder to
visualize, the idea is the same in higher dimensions.

1Although we do not give the derivation here, a straightforward and useful
generalization is to allow error to be measured using an arbitrary symmetric
positive-definite metric tensor, e.g.(q̇ − Q)T M (q̇ − Q). In particular, it
is possible to automatically compute a sensitivity matrix, analogous to the
mass matrix in mechanics, that compensates for scale differences among the
components ofFq (see [31].)

The classical method of Lagrange multipliers [13] solves con-
strained optimization problems by adding to the gradient of the ob-
jective a linear combination of constraint gradients, with unknown
coefficients. One then solves simultaneously for the original un-
knowns, and for the coefficients. In the case of linear constraints
and a quadratic objective, this is a linear problem.

The two problems we wish to solve—obtainingṗi givenq̇, andq̇
given ṗi —seek to minimize the same objective subject to the same
constraints, differing only in regard to the knowns and unknowns.
Even so, the solutions will turn out to be quite different because of
the structure ofC j ’s dependencies oṅpi andq̇. We next consider
each problem in turn.

3.3 Floaters
In solving for theṗi ’s, the requirement that the gradient of the

objective be a linear combination of the constraint gradients is ex-
pressed by

Gṗi +
∑

j

λ j C j
ṗi = ṗi − P i + λi F i

x = 0 (4)

for some value of the unknown coefficientsλi . The summation over
j drops out becauseC j cannot depend oṅpi unlessi = j . In addition
we require that the constraints be met, i.e. thatCi = 0, 1 ≤ i ≤ n.
Equation 4 allows us to express theṗi ’s in terms of the unknown
λi ’s. Substituting foṙpi in equation 3 gives

Fi
x · (P i − λi F i

x) + Fq · q̇ + φFi = 0.

We may solve for eachλi independently. Doing so yields

λi = Fi
x · P i + Fq · q̇ + φFi

Fi
x · Fi

x
.

Substituting into equation 4 yields

ṗi = P i − Fi
x · P i + Fq · q̇ + φFi

Fi
x · Fi

x
Fi

x (5)

which is the particle velocity that solves the constrained optimization
problem. Notice that in the case that the surface is not moving and
the constraints are met, so thatFi = 0 andq̇ = 0, this reduces to

ṗi = P i − Fi
x · P i

F i
x · Fi

x
Fi

x,

which is just the orthogonal projection ofP i onto the surface’s tan-
gent plane atpi .

3.4 Control Points
We follow the same procedure in solving forq̇, except that deriva-

tives ofC j andG are taken with respect tȯq. The condition that the
gradient of the objective be a linear combination of the constraint
gradients is

Gq̇ +
∑

j

λ j C j
q̇ = q̇ − Q +

∑
j

λ j F j
q = 0. (6)

This time, the sum does not vanish, because everyC j generally
depends oṅq.

c©1994 ACM 3 Computer Graphics, Proc. SIGGRPAH ’94.

262

We next use equation 6 to substitute forq̇ in equation 3:

Fi
x · ṗi + Fi

q ·
(

Q −
∑

j

λ j F j
q

)
+ φFi = 0.

Rearranging gives us then × n matrix equation to be solved forλ j :∑
j

(
Fi

q · F j
q

)
λ j = Fi

q · Q + Fi
x · ṗi + φFi . (7)

Note that element(i, j) of the matrix is just the dot productFi
q · F j

q.

Having solved for theλ j ’s, we then solve foṙq using equation 6:

q̇ = Q −
∑

j

λ j F j
q. (8)

3.5 Summary
In this section we have given the solutions to two very closely

related problems:

• Given the instantaneous surface motionq̇, solve for particle
velocitiesṗi that minimize deviation from desired velocities
P i subject to the constraint that the particles stay on the sur-
face. Each particle’s constrained velocity may be computed
independently.

• Given the particle velocitieṡpi , solve for the implicit function
time derivativeq̇ that minimizes deviation from a desired time
derivativeQ, again, subject to the constraint that the particles
must remain on the surface. Calculatingq̇ entails the solution
of ann × n linear system, wheren is the number of particles.

We combine these methods by maintaining two populations of
particles: control pointsand floaters. Control points are moved
explicitly by the user, anḋq is calculated to make the surface follow
them. In contrast, floaters’ velocities are calculated to make them
follow the surface, oncėq has been computed.

4 Adaptive Sampling
In this section we address the problem of sampling implicit sur-

faces, building on the floater mechanism that we presented in the
previous section. Good sampling is a requirement both for quick
rendering and for the evaluation of integrals such as surface area or
volume.

Our primary goal is to obtain sampling distributions that are either
(a) uniform, with user-specified density, (b) or non-uniform, with
density based on local criteria such as surface curvature. We wish
to reach the specified distribution quickly from a few seed points
(ideally, only one per connected component) and tomaintaina good
distribution as the surface moves and deforms. To support interactive
sculpting, we must be able to update at least a few hundred sample
points at 10Hz or better. Additional goals are that the particles should
move as little as possible in response to surface motion, and that only
basic and generic information about the functionF be required. It
should not be necessary to supply a surface parameterization.

The starting point for our approach is the idea, introduced by
Turk [28] and by Figueiredoet al. [12], that particles can be made
to spread out to uniform density by local repulsion, relying on the
finiteness of the surface to limit growth. Simple repulsion can do a
good job at ironing out local irregularities given a reasonably good
initial sampling (as in Turk’s application to resampling of a polygon

mesh) but is extremely slow to converge if the initial sampling is
irregular at large scale, and fails completely to track surface motions
and deformations.

After describing our basic repulsion scheme, we introduce the
idea ofglobal fissioning: we start the sampling process with a very
small number of particles but a very large radius of interaction, com-
ing close to equilibrium in just a few iterations. We then fission each
particle, imposing random displacements that are smaller than the
interaction radius. At the same time, we scale the interaction ra-
dius to a smaller value. We now have a new starting point, locally
irregular but with nearly uniform large-scale structure. A few itera-
tions suffice to smooth out the small irregularities and reach a new
equilibrium. The scaling and fissioning process is repeated until the
target sampling density is reached.

Global fissioning still fails to handle surface motion: should new
nonuniformities be introduced after the fissioning process termi-
nates, the system suffers all of the shortcomings of simple fixed-
scale repulsion. So, for example, the sudden introduction of a bulge
in the surface can create a gaping hole in the sampling pattern that
will be repaired extremely slowly, if at all. Intuitively, we would
like particles at the edge of such voids to “feel” the reduction of
density, expand their radii of interaction to quickly fill the hole, then
begin fissioning to restore full density. On the other hand, if density
becomes too high, we would like particles to die off until the de-
sired density is restored. We will conclude the section by describing
a fast and robust adaptive repulsion scheme that provides just this
behavior, meeting all of our goals.

4.1 Simple Repulsion
As a windowed density measure, we employ a simple Gaussian

energy function based on distances between particles in 3-D. We
define theenergyof particlei due to particlej to be:

Ei j = α exp
(
−|r i j |2

2σ 2

)
wherer i j = pi − p j is the vector between particles,α is a global
repulsion amplitude parameter, andσ , called the globalrepulsion
radius, is the standard deviation of the Gaussian. The repulsion
radius controls the range of the repulsion “force.” Note thatEi j =
E ji .

The energy of particlei in its current position is defined as:

Ei =
n∑

j =1

Ei j

Ultimately, we would like to reach the global minimum of each
Ei by varying the particle positions on the surface. Finding the
global minimum is impractical, but we can find a local minimum by
gradient descent: each particle moves in the direction that reduces its
energy fastest. We therefore choose each particle’s desired velocity
to be negatively proportional to the gradient of energy with respect
to its position:

P i = −σ 2Ei
pi =

n∑
j =1

r i j Ei j

The formulas for energy and desired velocity have been carefully
chosen here so that “energy” is unitless, while desired velocity is
proportional to distance. This guarantees that the sampling pattern
computed by this simple repulsion method scales with a surface.

If desired particle velocities are set in this way, and constrained
particle velocities are computed with equation 5, particles repel, but
their behavior is highly dependent on the parameterσ . The slope of a

c©1994 ACM 4 Computer Graphics, Proc. SIGGRPAH ’94.

263

Gaussian peaks at distances of±σ and it is near zero at much smaller
or much greater distances. When the distance between particles is
not between.03σ and 3σ , for instance, the repulsion is below 7%
of its peak. Ifσ is chosen too small then particles will (nearly) stop
spreading when their separation is about 3σ , and ifσ is chosen too
big then distant particles will repel more than nearby ones, and the
resulting sampling pattern will be poor. The best value forσ is about
.3

√
(surface area)/(number of particles).

4.2 Global Fissioning
If a surface is seeded with several floater particles, and an initial

value ofσ can be found that causes these particles to disperse, then
the sampling can be repeatedly refined by allowing the particles
to reach equilibrium, then simultaneously fissioning each particle
into two, giving the new particles a small random displacement, and
simultaneously dividingσ by

√
2. The particles are considered to be

at equilibrium when their net forces, and hence their speeds, get low.
With this global fissioning scheme, early generations will spread out
sparsely, and succeeding generations will fill in more densely.

Simple repulsion with global fissioning is acceptable for main-
taining a good distribution on a very slowly changing surface, but the
population is always a power of two, and particles do not redistribute
quickly in response to rapid surface changes. Global fissioning fails
to adapt to changes in a surface adequately, as mentioned earlier.

4.3 Adaptive Repulsion
To develop a more adaptive repulsion scheme, we employ an anal-

ogy to a population of organisms distributing itself uniformly across
an area. Specifically, imagine a population of pioneers spreading
West and colonizing America. In order to settle the entire country
as quickly as possible, a good rule is for each male-female pair to
spread out as much as possible away from their neighbors, until the
encroachment on them is roughly equal in all directions, and only
then to homestead and have children. If the encroachment from
neighbors is low, then each pair can claim more land (be greedier),
but when neighbors are pressing in, each pair must relinquish land.
Early pioneers travel great distances and claim huge tracts of land,
while later generations move less and divide up successively smaller
shares until the desired density is achieved.

These ideas can be applied to particle behavior. To achieve uni-
form densities quickly, and maintain them as the surface moves or
deforms, we will allow each particle to have its own repulsion ra-
diusσ i , and to decide independently when it should fission or die.
A particle’s radius should grow when all of the forces on it are small
and it should shrink when the forces on it are big. For a particle
near equilibrium, birth and death occur when the density is too low
or too high, respectively. We now quantify these principles.

Similar to the simple repulsion scheme, we define the energy of
particlei due to particlej as:

Ei j = α exp
(
− |r i j |2

2(σ i)2

)
Note that the global parameterσ has been replaced by the local
parameterσ i , so thatEi j 6= E ji in general.

The energy at particlei is defined as:

Ei =
n∑

j =1

(Ei j + E ji)

The repulsion force and desired velocity is again proportional to the

gradient of energy with respect to position:

P i = −(σ i)2Ei
pi = (σ i)2

n∑
j =1

(r i j

(σ i)2
Ei j − r i j

(σ j)2
E ji

)
(9)

The time-varying repulsion radii will be controlled differentially.
We want the radius to grow when the energy is too low and to
shrink when the energy is too high. This can be done indirectly by
controlling the energies.

As stated earlier, our energy measure is scale-invariant. That is,
if all surfaces and samples are scaled (pi andσ i), theEi will remain
constant. Therefore, to ensure that neighboring particles repel each
other, we can simply drive all of their energies to a global desired
energy level,Ê. To arrive at a value for̂E, we consider an ideal
hexagonal close-packing, which is the best uniform sampling pattern
for a planar surface. In this configuration, allσ i should be equal,
and the distance between nearest neighbors should be roughly 2σ
to guarantee strong repulsion forces. Since each particle has six
nearest neighbors in this configuration, the desired energy should be
roughly Ê = 6α exp

(−(2σ)2/(2σ 2)
) = 6e−2α ≈ .8α.

The portion of a particle’s repulsion energy that is directly affected
by a change in its own repulsion radius is:

Di =
n∑

j =1

Ei j

To keepDi near the desired value, we use the linear feedback equa-
tion:

Ḋi = −ρ(Di − Ê) (10)

whereρ is the feedback constant.
The change to the repulsion radius of a particle that will yield

this change in energy can be derived with the chain rule:Ḋi =
Di

σ i σ̇
i + ∑

j Di
p j · ṗ j , neglecting the latter terms, thus:

σ̇ i = Ḋi

Di
σ i

(11)

The rule above works fine for particles that are exerting some force on
their neighbors, but it causes infinite radius change when a particle
is alone in a sparsely sampled region of a surface (or is the first
particle), whereDi = Di

σ i = 0. In such cases we want the radius
to grow, but not catastrophically, so we modify equation 11:

σ̇ i = Ḋi

Di
σ i + β

(12)

for someβ. The change in energy with respect to a change in radius
is:

Di
σ i = 1

(σ i)3

n∑
j =1

|r i j |2Ei j (13)

Using equations 9, 12, 10, and 13 to control particle positions and
repulsion radii will do a good job of moving particles into sparse
regions quickly, but their radii might become very large, and hence
the density might remain too low.

4.4 Adaptive Fission/Death
To achieve uniform density it is necessary that large-radius par-

ticles fission. Likewise, particles that are overcrowded should be
considered for death.

We use the following criteria to control birth and death of parti-
cles: A particle is fissioned iff:

c©1994 ACM 5 Computer Graphics, Proc. SIGGRPAH ’94.

264

Figure 1: This sequence illustrates the adaptive repulsion and fis-
sioning mechanism. The topmost image shows a deliberately poor
sampling of a blobby cylinder produced using simple repulsion: the
cylinder was rapidly stretched, leaving the sample points behind.
The remaining images, from top to bottom, show the recovery of
good sampling when adaptive repulsion is enabled. The particles
at the frontier increase their radii of repulsion, rapidly filling the
voids. As the particles slow down, they fission, restoring the de-
sired sampling density. This process takes about four seconds on an
SGI Crimson.

• the particle is near equilibrium,|ṗi | < γσ i , and
• either the particle’s repulsion radius is huge (σ i > σ max), or

it is adequately energized and its radius is above the desired
radius (Di > ν Ê andσ i > σ̂).

Fission splits a single particle in two. The two particles are given
initial radii ofσ i /

√
2 and a desired velocity that is a random direction

scaled by a fraction ofσ i . A particle dies iff:
• the particle is near equilibrium,|ṗi | < γσ i , and
• the particle’s repulsion radius is too small,σ i < δσ̂ , and
• the following biased randomized test succeeds:R > σ i /(δσ̂),

whereR is a uniform random number between 0 and 1.
The death criteria are made stochastic to prevent mass suicide in
overcrowded regions.

This combination of adaptive repulsion, fissioning, and death
is much more responsive to changes in the surface shape than the
simple repulsion scheme.

5 Implementation and Results
The techniques described above have been implemented in about

3700 lines of C++ code. Particular implicit function classes are
derived from a generic implicit function base class. Adding a new
implicit function to the system is easy, requiring only the imple-
mentation of functionsF , Fx, Fq, and bounding box. Each of these
exceptFq is standard in any system employing implicit functions.

For example, we define the blobby sphere implicit function to be
the sum of Gaussians of the distance to each ofk center points [8].
The parameter vectorq consists of 4k + 1 parameters: a biasb plus
four parameters for each sphere (a center 3-vectorci and standard
deviationsi). Thus,

q = [b, c1, s1, c2, s2, . . . , ck, sk]

If we define

gi (x) = exp
(
−|x − ci |2

(si)2

)
then the functions needed by the system are

F(x) = b −
k∑

i =1

gi (x)

Fx(x) = 2
∑

i

x − ci

(si)2
gi (x)

Fq(x) = [Fb, Fc1, Fs1, Fc2, Fs2, . . . , Fck , Fsk]

where
Fb(x) = 1

Fci (x) = −2
x − ci

(si)2
gi (x)

Fsi (x) = −2
|x − ci |2

(si)3
gi (x)

If we assume thatgi (x) = 0 beyond a radius of 3si , then a con-
servative bounding box for blobby spheres is the bounding box of
non-blobby spheres with centersci and radii 3si .

We have also implemented spheres and blobby cylinders. A
blobby cylinder function is defined to be the sum of Gaussians of
the distance to each of several line segments. A system ofk blobby
cylinders has 7k + 1 parameters: a bias plus seven parameters for
each cylinder (two endpoints and a standard deviation).

It is often useful to freeze some of these parameters to a fixed
value so that they will not be modified during interaction. This is

c©1994 ACM 6 Computer Graphics, Proc. SIGGRPAH ’94.

265

done simply by leaving them out of theq and Fq vectors. To get
blobs of equal radii, for instance, one would omit allsi .

The system starts up with a single floater positioned arbitrarily
in the bounding box of the surface and then begins the physical
simulation by repeating the following differential step:

• The user interface setsdesiredcontrol point velocitiesP i . Sta-
tionary control points of course have zero desired velocity,
while control points being dragged by the user have desired
velocities that are calculated as a function of cursor position.

• SetQ, thedesiredvalues for the time derivatives of the surface
parameters. These are typically set to zero to minimize para-
metric change in the surface, but they could also be calculated
to attract the surface toward a default shape.

• Compute the actual surface parameter changes,q̇, as con-
strained by the control point velocities, using equations 7 and
8.

• Compute repulsion forces between floaters to set their desired
velocitiesP i , using equation 9.

• Compute actual floater velocities, as constrained by the
already-computed surface time derivatives, using equation 5.
(When the gradientFx is near zero, however, the surface is lo-
cally ill-defined, and it is best to leave such floaters motionless,
i.e., ṗi = 0.)

• Compute the change to floater repulsion radii,σ̇ i , using equa-
tions 12, 10, and 13.

• Update the positions of the control points and floaters using
Euler’s method, that is:pi (t + 1t) = pi (t) + 1t ṗi (t), and
similar formulas to update the surface parametersq from q̇,
and the floater repulsion radiiσ i from σ̇ i .

• Test each floater for possible fission/death.
• Redisplay the floaters and control points as disks tangent to

the surface, with normal given byFx and (for floaters) radius
proportional toσ i .

Using the mouse, the user can pick a control point and move it in
a plane perpendicular to the view direction. Pulling control pointi
sets the desired control point velocityP i . Since the velocities feed
into the constrained optimization solution, which in turn feeds into
a numerical differential equation solver, some care must be taken to
ensure that control point motions are reasonably smooth and well
behaved, which they might not be if positions were set directly by
polling the pointing device. A simple solution which works well is to
make the velocity of the dragged particle proportional to the vector
from the point to the 3-D cursor position. This in effect provides
spring coupling between the cursor and the control point. Although
the control point can lag behind the cursor as a result, performance
is brisk enough that the lag is barely noticeable. Similar dragging
schemes are described in [14,31]. The user can also create and delete
control points and adjust the desired repulsion radiusσ̂ through a
slider.

The matrix in equation 7 is symmetric and in general positive
definite. It thus lends itself to solution by Cholesky decomposition
[23], which is easy to implement, robust and efficient. However, the
matrix can become singular if inconsistent or redundant constraints
are applied, that is if the number of constraints exceedsm, or if
some of theFi

q’s are linear combinations of others. While the
former condition is easy to detect by counting, the latter is not.
The problem of singularities can be circumvented by using a least-
squares technique, or singular value decomposition [23].

The system is fast enough to run at interactive rates. Letm be
the number of degrees of freedom of the implicit surface, letn be
the number of control points, and letr be the number of floaters.
The most expensive parts of the algorithm are the computation of
then×n matrix of equation 7, which has costO(mn2), the solution

of the linear system, which has costO(n3), the computation of re-
pulsion forces between all pairs of floaters, which currently has cost
O(r 2), and the display of the floaters, which has costO(r) (with a
large constant). Our current system does not handle overconstrained
surfaces, som ≥ n, thus the total asymptotic cost of the algorithm
is O(mn2 + r 2) per iteration.

We have run simulations as complex asm = 56,n = 10,r = 500.
Above r = 250 floaters, theO(r 2) repulsion cost has dominated,
but this could easily be optimized using spatial data structures. For
smaller numbers of floaters (r < 150), our system runs at interactive
rates (10 Hz or faster on a Silicon Graphics workstation with 100
MHz processor).

The following parameter settings are recommended (whered is
surface diameter):

PARAMETER MEANING
1t = .03 time step
φ = ρ = 15 feedback coefficients to keep

particles from drifting off sur-
face, and keep particles ener-
gized, respectively

α = 6 repulsion amplitude
Ê = .8α desired energy
β = 10 to prevent divide-by-zero
σ̂ = d/4 or less desired repulsion radius (user-

controllable)
σ max = max(d

2 , 1.5σ̂) maximum repulsion radius (note
that this changes over time)

γ = 4 equilibrium speed (multiple of
σ i)

ν = .2 fraction ofÊ, for fissioning
δ = .7 fraction ofσ̂ , for death

Most of these parameters can be set once and forgotten. The only
parameter that a user would typically need to control is the desired
repulsion radius,̂σ .

Overall, the method meets our goals, it is fast, and it has proven
to be very robust. It has recovered from even violent user interaction
causing very rapid shape change. The adaptive sampling, fission,
and death techniques seem to be well tuned and to work well to-
gether, as we have not seen the system oscillate, diverge, or die with
the current parameter settings. During interaction,σ̂ is the only
parameter that needs to be varied.

Another result of this work is that we have discovered thatimplicit
surfaces are slippery: when you attempt to move them using control
points they often slip out of your grasp.

6 Conclusions
In this paper we have presented a new particle-based method for

sampling and control of implicit surfaces. It is capable of support-
ing real-time rendering and direct manipulation of surfaces. Our
control method is not limited to algebraic surfaces as many previous
techniques are; it allows fast control of general procedural implicit
functions through control points on the surface. We have presented
a dynamic sampling and rendering method for implicit surfaces that
samples a changing surface more quickly than existing methods.
The use of constraint methods allows particles to follow the surface
as it changes, and to do this more rapidly and accurately than with
penalty methods. Our algorithms for adaptive repulsion, fission, and
death of particles are capable of generating good sampling patterns
much more quickly than earlier repulsion schemes, and they sample
the surface well even during rapid shape changes.

c©1994 ACM 7 Computer Graphics, Proc. SIGGRPAH ’94.

266

Figure 2: This sequence illustrates the construction of a shape com-
posed of blobby cylinders. The shape was created by direct manip-
ulation of control points using the mouse. In the topmost image, all
three cylinder primitives are superimposed. Each subsequent image
represents the result of a single mouse motion.

There are a number of directions for future research.
We intend to investigate other uses for the samplings we obtain.

One of these is the calculation of surface integrals for area, volume,
or surface fairness measures such as those described in [19,30].
Another is the creation of polygon meshes.

To polygonize a surface within the framework presented here it
is necessary to infer topology from the sample points. This is more
difficult than finding a polygonization from a set of samples on a
grid in 3-D, as in marching cubes algorithms, where an approximate
topology is suggested by the signs of the samples and by the topol-
ogy of the grid itself. Delaunay triangulation in 2-D or 3-D is one
possible way to extract topology [12,27]. A more robust alternative
would employ Lipschitz conditions and interval arithmetic [26]. To
preserve the basic advantages of our method, we would require a
polygonization algorithm that allows efficient dynamic updates as
the surface changes.

Although we developed it to sample implicit surfaces, our adap-
tive repulsion scheme can be applied to meshing or sampling of
parametric surfaces as well: each floater would be defined by its
position in the surface’s 2-D parameter space, rather than position
in 3-D space.

Several performance and numerical issues remain to be addressed.
As we tackle more complex models, we could exploit sparsity in
F ’s dependence onq. Notably, with local bases such as blobby
models, the dependence ofF on faraway elements is negligible.
An additional numerical issue is the handling of singular constraint
matrices, due to overdetermined or dependent constraints. Excellent
results can be obtained using least-squares techniques.

An additional area of investigation is the use of local criteria,
notably surface curvature, to control sampling density. Surface cur-
vature can be measured directly, at the cost of taking additional
derivatives ofF . Since this places a considerable extra burden on
the implementor of implicit primitives, an alternative is to estimate
curvature at each floater based on positions and normals of nearby
points. Having established a desired density at each point, based
on curvature or any other criterion, relatively simple modifications
to the adaptive repulsion scheme will yield the desired nonuniform
density. Another possible density criterion is the user’s focus of
interest, e.g. the neighborhood of a control point being dragged.

Finally, there is room for considerable further work in interactive
sculpting of implicit surfaces. Dragging one control point at a time
can be somewhat limiting given the slippery behavior of the surface.
However, the basic control-point machinery developed here could be
used to build more complex sculpting tools that influence multiple
surface points in coordinated ways.

Acknowledgements
The authors wish to thank Scott Draves and Sebastian Grassia for

their contributions to this work. This research was supported in part
by a Science and Technology Center Grant from the National Science
Foundation, #BIR-8920118, by an NSF High Performance Comput-
ing and Communications Grant, #BIR-9217091, by the Engineering
Design Research Center, an NSF Engineering Research Center at
Carnegie Mellon University, by Apple Computer, Inc, and by an
equipment grant from Silicon Graphics, Inc. The second author
was supported by NSF Young Investigator Award #CCR-9357763.

References
[1] Chandrajit Bajaj, Insung Ihm, and Joe Warren. Higher-order

interpolation and least-squares approximation using implicit

c©1994 ACM 8 Computer Graphics, Proc. SIGGRPAH ’94.

267

algebraic surfaces.ACM Trans. on Graphics, 12(4):327–347,
Oct. 1993.

[2] David Baraff. Analytical methods for dynamic simulation of
non-penetrating rigid bodies.Computer Graphics, 23(3):223–
232, July 1989.

[3] David Baraff. Curved surfaces and coherence for non-
penetrating rigid body simulation. Computer Graphics,
24(4):19–28, August 1990.

[4] David Baraff and Andrew Witkin. Dynamic simulation of non-
penetrating flexible bodies.Computer Graphics, 26(2):303–
308, 1992. Proc. Siggraph ’92.

[5] Ronen Barzel and Alan H. Barr. A modeling system based on
dynamic constaints.Computer Graphics, 22:179–188, 1988.

[6] J. Baumgarte. Stabilization of constraints and integrals of
motion in dynamical systems.Computer Methods in Applied
Mechanics, 1972.

[7] Thaddeus Beier. Practical uses for implicit surfaces in an-
imation. In Modeling, Visualizing, and Animating Implicit
Surfaces (SIGGRAPH ’93 Course Notes), pages 20.1–20.10.
1993.

[8] James F. Blinn. A generalization of algebraic surface drawing.
ACM Trans. on Graphics, 1(3):235–256, July 1982.

[9] Jules Bloomenthal. Polygonization of implicit surfaces.Com-
puter Aided Geometric Design, 5:341–355, 1988.

[10] Jules Bloomenthal. An implicit surface polygonizer. In Paul
Heckbert, editor,Graphics Gems IV, pages 324–350. Aca-
demic Press, Boston, 1994.

[11] Jules Bloomenthal and Brian Wyvill. Interactive techniques
for implicit modeling. Computer Graphics (1990 Symp. on
Interactive 3D Graphics), 24(2):109–116, 1990.

[12] Luiz Henrique de Figueiredo, Jonas de Miranda Gomes,
Demetri Terzopoulos, and Luiz Velho. Physically-based meth-
ods for polygonization of implicit surfaces. InGraphics Inter-
face ’92, pages 250–257, May 1992.

[13] Phillip Gill, Walter Murray, and Margret Wright.Practical
Optimization. Academic Press, New York, NY, 1981.

[14] Michael Gleicher and Andrew Witkin. Through-the-lens cam-
era control.Computer Graphics, 26(2):331–340, 1992. Proc.
Siggraph ’92.

[15] Herbert Goldstein.Classical Mechanics. Addision Wesley,
Reading, MA, 1950.

[16] Huges Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
and Werner Stuetzle. Mesh optimization. InSIGGRAPH 93
Proceedings, pages 19–26, July 1993.

[17] David J. Jevans, Brian Wyvill, and Geoff Wyvill. Speeding up
3-D animation for simulation. InProc. MAPCON IV (Multi
and Array Processors), pages 94–100, Jan. 1988.

[18] William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3D surface reconstruction algorithm.Com-
puter Graphics (SIGGRAPH ’87 Proceedings), 21(4):163–
170, July 1987.

[19] Henry Moreton and Carlo S´equin. Functional minimization
for fair surface design.Computer Graphics, 26(2):167–176,
1992. Proc. Siggraph ’92.

[20] Shigeru Muraki. Volumetric shape description of range data
using “blobby model”.Computer Graphics (SIGGRAPH ’91
Proceedings), 25(4):227–235, July 1991.

[21] Paul Ning and Jules Bloomenthal. An evaluation of implicit
surface tilers. Computer Graphics and Applications, pages
33–41, Nov. 1993.

[22] Vaughan Pratt. Direct least-squares fitting of algebraic sur-
faces. Computer Graphics (SIGGRAPH ’87 Proceedings),
21(4):145–152, July 1987.

[23] W.H. Press, B.P. Flannery, S. A. Teukolsky, and W. T. Vetter-
ling. Numerical Recipes in C. Cambridge University Press,
Cambridge, England, 1988.

[24] A. Ricci. A constructive geometry for computer graphics.
Computer Journal, 16(2):157–160, May 1973.

[25] T. Sederberg. Piecewise algebraic surface patches.Computer
Aided Geometric Design, 2(1-3):53–60, 1985.

[26] John M. Snyder.Generative Modeling for Computer Graphics
and CAD. Academic Press, Boston, 1992.

[27] Richard Szeliski and David Tonnesen. Surface modeling with
oriented particle systems.Computer Graphics (SIGGRAPH
’92 Proceedings), 26(2):185–194, July 1992.

[28] Greg Turk. Generating textures on arbitrary surfaces using
reaction-diffusion.Computer Graphics (SIGGRAPH ’91 Pro-
ceedings), 25(4):289–298, July 1991.

[29] Greg Turk. Re-tiling polygonal surfaces.Computer Graphics
(SIGGRAPH ’92 Proceedings), 26(2):55–64, July 1992.

[30] William Welch and Andrew Witkin. Variational surface mod-
eling. Computer Graphics, 26(2):157–166, 1992. Proc. Sig-
graph ’92.

[31] Andrew Witkin, Michael Gleicher, and William Welch. In-
teractive dynamics.Computer Graphics, 24(2):11–21, March
1990. Proc. 1990 Symposium on 3-D Interactive Graphics.

[32] Andrew Witkin and William Welch. Fast animation and control
of non-rigid structures.Computer Graphics, 24(4):243–252,
July 1990. Proc. Siggraph ’90.

[33] Brian Wyvill, Craig McPheeters, and Geoff Wyvill. Data struc-
ture for soft objects. The Visual Computer, 2(4):227–234,
1986.

c©1994 ACM 9 Computer Graphics, Proc. SIGGRPAH ’94.

268

Using Particles to Sample and Control More Complex Implicit Surfaces

John C. Hart, Ed Bachta, Wojciech Jarosz, Terry Fleury
University of Illinois

{jch|bachta|wjarosz|tfleury}@uiuc.edu

Abstract

In 1994, Witkin and Heckbert developed a method for
interactively modeling implicit surfaces by simultaneously
constaining a particle system to lie on an implicit surface
and vice-versa. This interface was demonstrated to be ef-
fective and easy to use on example models containing a
few blobby spheres and cylinders. This system becomes
much more difficult to implement and operate on more com-
plex implicit models. The derivatives needed for the parti-
cle system behavior can become laborious and error-prone
when implemented for more complex models. We have de-
veloped, implemented and tested techniques for automatic
and numerical differentiation of the implicit surface func-
tion. Complex models also require a large number of pa-
rameters, and the management and control of these param-
eters is often not intuitive. We have developed adapters,
which are special shape-transformation operators that au-
tomatically adjust the underlying parameters to yield the
same effect as the transformation. These new techniques
allow constrained particle systems to sample and control
more complex models than before possible.

1 Introduction

Witkin and Heckbert [14] revolutionized implicit surface
modeling by using a particle system to both display and
control an implicit surface. Their treatment used a real func-
tion F : R3 ×Q → R over model spaceR3 and a contin-
uous parameter spaceQ. This real function yielded an im-
plicit surface as the solution pointsx such thatF (x,q) = 0
for a fixed, given vector of parametersq ∈ Q.

A particle pi constrained to the implicit surface ofF
such thatF (pi,q) = 0 is called afloater.This constraint is
enforced by setting its original velocitẏPi to a legal veloc-
ity ṗi by subtracting any illegal components normal to the
implicit surface

ṗi = Ṗi − F i
x · Ṗi + Fq · q̇ + φF i

F i
x · F i

x

F i
x. (1)

(Note that hereṖ denotes the desired velocity instead of
P [14].) These illegal components are due to either par-
ticle velocities (F i

x · Ṗi) or parameter velocities (Fq · q̇)
that change the resulting value ofF. Hence we need the
derivative ofF with respect to both its embeddingFx and
its parameterizationFq.

The constrained particle system displayed the implicit
surface with a collection of disks centered at the parti-
cles oriented according to the surface normal. These ori-
ented disks provide a usable and highly responsive display
of the underlying implicit surface, and also yield a quasi-
volumetric display of the surface that reveals interior struc-
ture in the gaps between disks. The visual edge noise cre-
ated by the disks can sometimes be distracting, but this can
be overcome by connecting the particles into a polygoniza-
tion using a topological guarantee [12].

Some floater particles can be selected as control parti-
cles, which means the implicit surface is constrained to pass
through these particles. Control particles can be dragged to
new locations, and the implicit surface deforms to accomo-
date its new position. This deformation occurs by changing
the parametersq of the implicit surface using the parameter
velocity

q̇ = Q̇−
∑

j

λjF j
q. (2)

The indexj is the index of the control particle, anḋQ is
the desired unconstrained parameter velocity. Theλj are
Lagrange multipliers found by solving the system∑

j

(
F i

q · F j
q

)
λj = F i

q · Q̇ + F i
x · ṗi + φF i. (3)

The desired parameter velocitẏQ is usually zero, such that
(2) and (3) dissipate control particle velocitiesṗ into pa-
rameter velocitieṡq.

Witkin and Heckbert [14] alluded to an object-oriented
implicit surface class hierarchy, where new implicit model
objects need to implementF, Fx, Fq and a bounding box (to
keep the particles from following a non-compact manifold
indefinitely). Most implicit modeling systems implement
the function, its gradient and a bounding box, so the only

1

269

new information needed is the derivative of the implicit sur-
face function with respect to its parameters.

The goal of the work described in this paper is to inte-
grate the particle system into a full-featured implicit surface
modeling system. Section 2 reviews some previous implicit
surface modeling systems. To our knowledge, no one has
yet implemented such an object hierarchy in a full-featured
implicit modeling system based on the control particle in-
terface.

We have developed such an object-oriented class hierar-
chy specifically for inclusion into a particle-based model-
ing system. Section 3 describes the flexibility of our system
that includes a large variety of implicit surface primitives
and operators.

Witkin and Heckbert [14] suggest (onceFq is imple-
mented) the application of particle-based interaction to
complex hierarchical implicit surface models is straight-
forward. In the process of implementing such a system
we have found several setbacks, specifically in implement-
ing and debugging the function derivativesFx and Fq,
and managing large numbers of parameters for manipulat-
ing complex composite implicit surface models, as demon-
strated by the 30+ parameters shown in Figures 1 and 2.

One of the challenges of implementing a full-featured
implicit surface representation for a particle-based modeler
is the development of the derivatives needed. The particle-
based modeler requires each primitive and operator to have
a derivative with respect to its embedding space and its pa-
rameters. Section 4 describes several methods available to
ease the programming of these derivatives.

Complex hierarchies of implicit operators and primi-
tives quickly grow to become overwhelming. Section 5
describes methods for modeling that use special opera-
tors called adapters that reparameterize a complex implicit
model. This reparameterization simplifies the modeling
process by providing more intuitive parameters to the user.

2 Other Complex Implicit Surface Modeling
Systems

This paper develops a modeling system capable of creat-
ing complex models of a wide variety of implicit primitives
and operators using a particle system for display and con-
trol. Several other modeling systems have been previously
developed to create complex implicit surface models, but
each of these system has been limited to a specific subset of
implicit primitives and operations.

Witkin and Heckbert [14] used a prototype implemen-
tion of a particle-based implicit surface modeler that proved
the concept. Their implementation was never released, and
only supported small collections of a few primitives, in-
cluding blobby spheres and cylinders. Pedersen [8] later
released a more robust, flexible and freely available particle

system based on (1) of floater particles for displaying im-
plicit surfaces, but it did not include an implementation of
(2) and (3) that provided the control particles needed to in-
teractively change the surface parameters. Stander and Hart
[12] later described how to use interval analysis and Morse
theory to connect surface constrained floater particles into
a polygonization. Their implementation was also a proof-
of-concept prototype that was never released. It was limited
to axis-aligned Gaussian ellipsoids, and the dynamic mesh
that connected the particles into a polygonization was very
fragile.

The Blob Tree integrated multiple implicit modeling
tools into a single scene description hierarchy for implicit
surface modeling [15]. The Blob Tree was based on
piecewise-polynomial blobby sphere primitives that blend
when placed in proximity to each other. The Blob Tree or-
ganized objects into groups and groups can be combined
with a smooth surface blend or a creased CSG operation.
The blend tree also supported other implicit surface opera-
tions, for example non-linear deformations.

The Hyperfun system supported collaborative model-
ing of implicit surfaces [1]. Hyperfun is based on R-
functions which generalize blending between primitives to
include non-blended CSG operations. Its components in-
clude a scene description hierarchy, a declarative language
for defining functions, new file formats for communicating
implicit surface descriptions, and integration of the results
into common graphics systems such as POVRay.

Implicit surfaces are also supported by the VTK toolkit
[10, 11]. These implicit surfaces could be used a sources
for volumetric “structured-points” data pipelines. These
pipelines can be made arbitrarily complex, and have been
used to model context geometry to aid in the visualization
of acquired volumetric data [9]. Implicit surface sources
are integrated into the VTK toolkit by defining the function
and its gradient, though the VTK tools typically sample the
source into a volume before performing any further process-
ing.

3 A General Implicit Object Model

Many previous implicit surface modeling systems have
focused only on a subset of the available implicit surface
models. Our goal is to design a general full-featured im-
plicit surface system that could support any implicit surface
representation or operation.

The Implicit class sits at the root of our im-
plicit surface hierarchy, and contains three key member
functions. The member functionproc (x) returns the
scalar resultF (x,q). The member functiongrad (x) re-
turns the 3-vector resultFx(x,q). The member function
procq (x,dq) puts the derivativeFq(x,q) into the vector
dq. Each of these functions assumesq is constant and held

2

270

Figure 1. A sample screen of our particle-based modeler directly manipulating a quartic surface. This
quartic surface has 35 continuous parameters shown on the right that can be entered individually or
selected to be set by the controller particle constraints.

Figure 2. The particle-based modeler directly manipulating a dumbell modeled using R-functions.
This composite surface has 34 continuous parameters shown on the right that can be entered
individually or selected to be set by the controller particle constraints.

3

271

within theImplicit as part of its internal state.
We provide member access to the continuous parameters

through an interface uniform across all classes derived from
Implicit . The member functiongetq (q) puts the cur-
rent parameters in vectorq, whereas the membersetq (q)
sets the current parameters to those in vectorq. This param-
eter access allows the particle system to query and adjust the
continuous parameters as necessary to apply the floater and
control particle constraints. The actual implementation of
a specific implicit object need not store its parameters in a
vector, and can provide additional specialized access meth-
ods to its parameters1.

We have also implemented implicit surface operators
(e.g. offset, scale, union, etc.). These operators affect the in-
puts and/or the outputs of one or more operand implicit ob-
jects. Thegetq andsetq functions for the operators place
the operator’s parameters at the beginning of the vector, and
follow them with the parameters of its operands. Hence, one
can access all of the parameters of a hierarchically-defined
implicit object through thegetq /setq interface of the root
operator object in the hierarchy.

4 Differentiation

One of the main obstacles in our implementation of a va-
riety of implicit surface models has been in the derivation,
implementation and debugging of derivatives of the func-
tions.

4.1 Operator-Level Automatic Differentiation

The derivatives of operators, namelygrad andprocq ,
are implemented using use the chain rule, eventually calling
grad andprocq of the operands. The operations can be
considered an arithmetic on implicit objects, which makes
the chain-rulegrad andprocq implementations a partial
form of automatic differentiation,

One could define arithmetic operations as Implicit op-
erators. For example, the operatorTimes implements the
functionFG as

Times::proc(x) {
return F->proc(x) * G->proc(x);

}
Times::grad(x) {

return F->grad(x)*G->proc(x) +
F->proc(x)*G->grad(x);

}

1For example, we have derived anAlgebraic class from Implicit that
provides access to thed3/6 + d2 + 11d/6 + 1 coefficients of a degreed
trivariate polynomial. The coefficients are returned sorted by degree, then
by x, y andz exponents. However, access to these coefficients is much
easier by providing the exponents ofx, y andz than providing a single
coefficient index.

Given a sufficient set of these arithmetic operations, one
could implement any implicit model. Implicit models con-
structed by composing these operators would have their dif-
ferential functions automatically defined, since these ob-
jects compute their own derivatives. However, such an im-
plementation would be cumbersome and inefficient.

Rather than implement high-level shape operators using
automatically differentiated low-level arithmetic operators,
we chose instead to automatically differentiate the high-
level shape operators. A good example is our implemen-
tation of an abstractBlend class. Our blend class assumes
the blend combines the isocontours of its operand implicit
objectsF andG [6]. The blend is thus defined by a real
bivariate functionh(f, g) of the valuesf, g returned by the
operands. The blend surface is thus implemented as

Blend::proc(x) {
return h(F->proc(x),G->proc(x));

}

Specific blends are derived from theBlend class, and
define the pure virtual functionh. The blobby model can
blend arbitrary implicit surfaces using the function

h(f, g) = T − e−f−a − e−g−b (4)

whereT, a andb control the “blobbiness” of the blend [4].
The superelliptical blend is given in this form as

h(f, g) =
(f − a)d

ad
+

(g − b)d

bd
− 1 (5)

wherea andb are continuous parameters controlling the ex-
tent of the blend and the discrete parameterd is the degree
of the blending function [6]. R-functions provide a contin-
uous neighborhood for CSG operations, and are given by

h(f, g) = (f + g + s
√

f2 + g2)(f2 + g2)d/2 (6)

where the discrete parameterss = ±1 differentiates be-
tween union and intersection, andd again provides a degree
of smoothness [7].

Using the chain rule, we define

Blend::grad(x) {
return hf(F->proc(x),G->proc(x))*F->grad(x) +

hg(F->proc(x),G->proc(x))*G->grad(x);
}

using the partial derivative methodshf and hg . Thus,
classes derived fromBlend need not implementproc ,
grad andprocq , but must implement the simpler method
h and its partial derivativeshf andhg .

4.2 Code-Level Automatic Differentiation

Given aproc implementation, another technique for au-
tomatically generating the derivativesgrad andprocq is

4

272

to apply the automatic differentiation method to theproc
procedure source code. Computational differentiation is an
automatic differentiation applied to algorithms by declaring
some variables as dependent and others as independent, and
synthesizing the source code necessary to yield the deriva-
tives of the dependent variables with respect to the inde-
pendent variables. For example, recent tools exist (ADOL-
C,ADIC) that differentiate C language source code [5, 3].
Performing automatic differentiation at compile time yields
faster derivatives than automatically differentating at run
time.

4.3 Numerical Differentiation

We can also use numerical techniques to evaluate the
derivatives. Forward differencing of the spatial derivative
is implemented as

Fx(x,q) =

 F (x + εe0,q)− F (x,q),
F (x + εe1,q)− F (x,q),
F (x + εe2,q)− F (x,q)

 (7)

whereei is a unit vector in theith dimension direction. Us-
ing this notation, the parameter derivative can be similarly
derived

Fq(x,q) = (. . . , F (x,q + εei)− F (x,q), . . .) . (8)

We have found that the constrained particle system re-
mains stable even when numerical versions ofFx andFq

are used. The symbolicFx runs about four times as fast
as the numericalFx because the forward differencing im-
plementation calls the implicit surface function four times.
Similarly, the symbolicFq implementation is|q|-times
faster than its numerical version.

The virtual methods grad and procq of our
Implicit object default to the forward differences ap-
proximations. Hence, we can add a new implicit surface
model into our library as a black-box by implementing the
methodproc . This task is a less daunting than derivingFq

by hand, as has been previously suggested [14].

5 Parameterization

A second problem with using particles to manipulate
complex implicit surface models is the management of the
parametersq of the implicit surface model. This problem
can be decomposed into two specific issues. The first issue
is the conceptual disconnection between an object’s intu-
itive parameters (such as location and orientation) and its
actual parameters (such as the coefficients of an algebraic).
The second issue is that there are often an overwelmingly
large number of free parameters, even for a moderately
complex implicit surface model.

One problem we have found is that it is difficult to trans-
late the ellipsoid

F (x, y, z, q0, . . . , q9) = q4x
2 + q5xy + q6y

2 +
q7xz + q8xy + q9z

2 +
q1x + q2y + q3z + q0. (9)

using the control particles. We have the ability to select
which parameters the control particles affect, but identify-
ing which of the ten quadric coefficients control translation
is not intuitive.

In order to translate the ellipsoid byo = (ox, oy, oz),
we need to apply the domain transformationF (x− ox, y −
oy, z − oz,q). Evaluating (9) and collecting terms shows
that translation does not affect the parametersq4 through
q9, but affectsq0 throughq3 as

q0 ← q0 + q4o
2
x + q5oxoy + q6o

2
y +

q7oxoz + q8oyoz + q9o
2
z +

q1ox + q2oy + q3oz, (10)

q1 ← q1 − 2q4ox − q5oy − q7oz, (11)

q2 ← q2 − q5ox − 2q6oy − q8oz, (12)

q3 ← q3 − q7ox − q8oy − 2q9oz. (13)

Enabling only these four coefficients to be changed by the
control particles actually causes the entire ellipsoid to de-
form instead of translate because (2) and (3) dissipate par-
ticle velocity evenly among the parameter velocities. The
velocities of the ellipsoid parameters due to translation are
in fact q̇ = (q1ox + q2oy + q3oz + q4o

2
x + q5oxoy + q6o

2
y +

q7oxoz + q8oyoz + q9o
2
z,−2q4ox − q5oy − q7oz,−q5ox −

2q6oy − q8oz,−q7ox − q8oy − 2q9oz, 0, 0, 0, 0, 0, 0).

5.1 Adapters

We solve this problem with the construction of a special
kind of operator called an adapter. Whereas operators are
designed to remain in the model, adapters are temporary
and are used to control the parameters of a model during
interactive editing.

An operator creates its parameter vector from its param-
eters and the parameters of its operands. This assumes that
the operator’s parameters are independent of the operands’
parameters (e.g. the radius of an offsetting operation). The
parameters of an adapter are assumed to be related to a sub-
set of the parameters of its operands. The parameter vector
of the adapter contains only the parameters of the adapter,
and ignores the parameters of the adapter’s operands.

For example, the adapterMover is defined by

Mover::proc(x) { return F->proc(x - o) }

whereF is the operand ofMover ando is an offset vec-
tor. The parameters specific toMover consist only of the

5

273

offset vector. IfMover was an ordinary operand, then its
parameter vectorq would beo catenated with whatever pa-
rameters operand objectF may have. AssumingF has been
sufficiently parameterized, the additional components toq
offered by the offset vectoro would be redundant.

SinceMover is an adapter, we mask all of its operand’s
parameters, such thatMover::procq() returns onlyo.
This restricted parameter vector allows the constrained par-
ticle system to move an object using a single control parti-
cle. But in order for the object to remain in its new location,
the adapter must remain attached. One can imagine a model
becoming quite complex with adapters every time a subset
of the model needs to be positioned.

We can remove an adapter if its parameters are set to
its identity configuration, (zeroed in the case ofMover).
Hence we need a way of transferring changes in parameters
in the adapter to parameters in the adapter’s operand.

An adapter implements some deformation functionD :
R3 → R3. We can apply the deformationD to the implicit
surface ofF (x,q0) as a domain transformation, yielding
the implicit surface ofF (D−1(x),q0). We need to find a
new set of parametersq1 such that

F (D−1(x),q0) = F (x,q1) ∀x ∈ R3. (14)

The adapter functionD has its own set of parameters
qD. (In theMover example,qD = o). Let the parameters
of F be denotedqF . We can use the JacobiandqF /dqD to
find how changes inqD affectqF . But this Jacobian would
need to be derived and implemented to interface between
every adapter and everyImplicit primitive and operator
in the modeling system.

Equations (2) and (3) provide a more general solution.
We construct a collection of control particles and apply the
deformationD to them, which causes the effect of the dis-
tortion to be applied to the original parameters ofF.

We create a special array of particlespi. Even though
each particle constrains the surface to pass through a three-
dimensional point, the constraint restricts only one degree
of freedom, since the particle may freely move across the
two degrees of freedom along the surface. Hence, the num-
ber of particlesn in the array should be|qF |. We assume
that |qD| << |qF | andF is flexible enough to find the so-
lution of a much less flexible deformationD.

We then solve a variation of(3) specifically for process-
ing the effect ofD into the parameters ofF,∑

j

(
F i

q · F j
q

)
λj = F i

x ·(D(pi)−pi)+φ(F i−F (pi
0,q0)).

(15)
The resulting Lagrangian multipliersλj provide the solu-
tion as

q̇F = −
∑

j

λjF j
q. (16)

We have assumed no desired parameter velocity (Q̇ = 0).
Equation 15 has a slightly different feedback term that

allows F (pi) to be fixed to an arbitrary value, instead of
just zero as was the case in (3). This feedback term makes
sure the values at the particles do not drift away from their
original values, which are found by evaluatingF at the pre-
deformation particle locationspi

0. Hence we can place par-
ticles anywhere in space to capture the field ofF instead of
just its implicit surface.

We sprinkle these particles randomly in space instead of
across the surface. The implicit surface ofaF is the same
as that ofF for anya 6= 0. Using particles on the surface
constrained toF = 0 could yield anaF result witha 6= 12.

5.2 Implementation

We implemented (15) and (16) in thesetq method of
the adapter. When a surface control particle is dragged, (2)
and (3) determine new parameters for the adapter’s defor-
mation through Euler integration ofq̇. These new adapter
parameters are then set by the particle system callingsetq .

The setq of the adapter performs the following algo-
rithm.

1. Set the state of its deformationD to use the parameters
from the parameter vectorq passed to it.

2. Use the deformationD to evaluate (15) and (16) to find
the resulting parameter velocityq̇F of its operandF.

3. Perform an Euler step on the velocityq̇F by adding
a fraction of it to the operand’s parameter vector re-
turned byF->getq , and store the result back in the
operand’s parameter vector viaF->setq .

Since the parameters have been passed from the adapter
to its operand, the adapter then returns its parameters to their
original state. Hence, when an adapter’s control particle
is moved on an implicit surface, the adapter’s parameters
remain fixed and its operand’s parameters change instead.
This is the primary difference between an adapter and an
operator in our modeling system.

5.3 Results

Figure 3 demonstrates this process on theMover
adapter applied to an ellipsoid that was originally placed
at the origin. We have placed the translation adapter on the
object and dragged the resulting composite object with a
single particle. The paremeters of the translation are au-
tomatically propagated to the parameters of the underlying
implicit ellipsoid primitive.

2This is also an issue when constructing implicit surfaces using radial
basis functions. One or more constraint points are placed inside or outside
the desired surface to indicate a desired interior or a desired local surface
orientation [13].

6

274

Figure 3. The effects of moving an ellipsoid by
the single yellow particle on the coefficients
of the quadric representation.

Careful examination of the parameters in Figure 3 re-
veals some numerical noise leaking intoq4, q5 andq6. This
is most likely due to numerical error from the Euler integra-
tion. These inaccuracies may also contain some discretiza-
tion error from the finite stochastic point-based sampling of
the effects of the distortion.

This numerical noise causes theMover operand to de-
form the ellipsoid as it translates. The feedback term is
designed to reduce this distortion, but it is difficult to use
this feedback term during the Euler integration because the
randomly-positioned field particles do not actually move
into their appropriate intermediate location as the param-
eter vector moves closer to the desired parameter vector. As
a result, our implementation worked best when we took a
large “predictor” step without feedback, followed by sev-
eral “corrector” steps containing only the feedback term.

6 Conclusion

We have developed a implicit surface representation that
is flexible enough to include a wide variety of different im-
plicit modeling primitives and operations. We have built our
system around a particle-based display and control system,
and have explored several method for easily programming
the derivatives needed for the particle dynamics and con-
straints.

We have also developed adapters which deform an im-
plicit surface but embed the deformation in the parameter
space of the implicit surface. These adapters provide the

user with more intutive modeling parameters during inter-
active manipulation, but do not increase the complexity of
the model.

6.1 The Implicit Modeling System

The implicit surface representation described in this pa-
per is a subset of our actual system. Our full system serves
as a base for our surface modeling research, and was de-
signed to include a wide variety of different surface mod-
els. Figure 4 (generated automatically byDoxygenand
dot) shows our present class hierarchy, demonstrating the
range of implicit surface representations this class supports.
Implicit surfaces are only one of the base representation
classes supported by the system.

Figure 4. A current snapshot of our Implicit
class hierarchy.

In the full system, our implicit objects include a second-
derivative Hessian matrix for interrogating the curvature of
the implicit surface. We plan to use the curvature to vary the
size of particles across the surface, such that areas of high
curvature receive many smaller particles. TheImplicit
class also includes interval extensions of many of the meth-
ods, to provide guarantees on properties over regions of
space. We also have developed a toolkit for interval-based
root finding and plan to implement topological polygoniza-
tion guarantees on a larger selection of implicit surfaces
than has previously before been accomplished [12].

Our goal for this system is to provide a publically-
available open-source common environment for implicit
surface research. The environment is available online at:

http://graphics.cs.uiuc.edu/projects/surface

7

275

The core of this representation was a group project of
a class on advanced surface modeling taught in the Fall
Semester 2000 at the University of Illinois. Each of the stu-
dents was assigned a component of the library to implement
as a project for the class. This format for a class project had
several advantages. The student projects were not discarded
at the end of class, which gives the students a stronger sense
of accomplishment. The student projects were also dis-
tinct, which encouraged cooperation and teamwork instead
of competition among the students. The interdependencies
among the components of this library meant that it was in
a student’s best interest to help any other student that might
be falling behind. This exercise provided production pro-
gramming experience in an environment similar to the one
many will find in their first jobs.

6.2 Future Work

The application of program differentiation tools on a
given code segment is itself a complex task. It would be
useful to develop a simpler subset of existing program dif-
ferentation tools specifically for automatically translating
proc methods intograd andprocq methods.

The ability to “flatten” chains of multiple operators into
a single operators is often employed in other hierarchical
models in computer graphics. Depending on the success of
implementations on implicit surfaces, it may be interesting
to reparameterize the interfaces of other shape representa-
tions.

We have implemented theMover adapter to verify the
derivations in Section 5. We are in the process of imple-
menting other adapters to perform deformations such as
scale, rotation, taper, twist and bend. Barr [2] introduced
the latter non-affine deformations, and it will be interest-
ing to see how well some implicits, such as high-degree al-
gebraics, can simulate the deformation effects within their
parameterizatons.

Implicit surfaces are stillslippery [14]. We have found
that it is much easier to “pull” a convex surface than to
“push” it. The slipperinessof the surface appears related
to the flow gradient of the surface in the direction of the
user-exerted force on a control particle. Constraining a con-
trol particle to a given position on the surface relative to
nearby features could reduce the slippery feel of this method
of modeling.

6.3 Acknowledgments

The core of our implicit surface library was coded by
CS497JCH students Ed Bachta, Lennie Brown, Nate Carr,
Jeff Decker, Bill Nagel and Steve Zelinka. Bill Lorensen,
Will Schroeder and Ross Whitaker provided valuable in-
sights into object oriented libraries from their experience

with the vtk project. This research is supported in part by
the NSF grant CCR-0196226 and the University of Illinois
Department of Computer Science.

References

[1] V. Adzhiev, R. Cartwright, E. Fausett, A. Ossipov, A. Pasko,
and V. Savchenko. Hyperfun project: a framework for col-
laborative multidimensional f-rep modeling.Proc. Implicit
Surfaces ’99, pages 59–69, Sept. 1999.

[2] A. H. Barr. Global and local deformations of solid primi-
tives. Computer Graphics, 18(3):21–30, July 1984.

[3] C. H. Bischof, L. Roh, and A. J. Mauer-Oats. ADIC: an
extensible automatic differentiation tool for ANSI-C.Soft-
ware: Practice and Experience, 27(12):1427–1456, 1997.

[4] J. F. Blinn. A generalization of algebraic surface drawing.
ACM Transactions on Graphics, 1(3):235–256, July 1982.

[5] A. Griewank, D. Juedes, H. Mitev, J. Utke, O. Vogel, and
A. Walther. ADOL-C: A package for the automatic differ-
entiation of algorithms written in C/C++.ACM Trans. Math.
Software, 22(2):131–167, June 1996.

[6] C. Hoffman and J. Hopcroft. Automatic surface genera-
tion in computer aided design.Visual Computer, 1:92–100,
1985.

[7] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. Func-
tion representation in geometric modeling: concepts, imple-
mentation and applications.Visual Computer, 11:429–446,
1995.

[8] H. K. Pedersen. imp. Source code available via im-
plicit.eecs.wsu.edu, 1997.

[9] W. Schroeder, W. Lorensen, and S. Linthicum. Implicit
modeling of swept surfaces and volumes.Proc. Visualiza-
tion ’94, pages 40–45, Oct. 1994.

[10] W. Schroeder, K. Martin, and W. Lorensen.The Visualiza-
tion Toolkit: An Object-Oriented Appriach to 3D Graphics.
Prentice Hall, Dec. 1997.

[11] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The
design and implementation of an object-oriented toolkit for
3d graphics and visualization.IEEE Visualization ’96, pages
93–100, Oct. 1996.

[12] B. T. Stander and J. C. Hart. Guaranteeing the topology of
an implicit surface polygonization for interactive modeling.
In Computer Graphics (Annual Conference Series), pages
279–286, Aug. 1997.

[13] G. Turk and J. O’Brien. Shape transformation using vari-
ational implicit functions.Computer Graphics (Proc. SIG-
GRAPH 99), pages 335–342, Aug. 1999.

[14] A. P. Witkin and P. S. Heckbert. Using particles to sample
and control implicit surfaces. InComputer Graphics (An-
nual Conference Series), pages 269–277, July 1994.

[15] B. Wyvill, E. Galin, and A. Guy. Extending the CSG
tree: Warping, blending and boolean operations in an im-
plicit surface modeling system.Computer Graphics Forum,
18(2):149–158, June 1999.

8

276

A Programmable Particle System Framework For Shape Modeling

Wen Y. Su∗ John C. Hart
University of Illinois Urbana-Champaign

Abstract

Particle systems are an effective tool for visualizing in-
formation in a variety of contexts. This paper focuses on the
use of surface-constrained particles to visualize informa-
tion about the surface. We have designed a particle system
programming framework consisting of behaviors, attributes
and shaders that allows users to rapidly create, debug, and
deploy particle systems for sensing and extracting specific
surface information and displaying this information in an
visually effective manner. We also introduce a simple par-
ticle system “little language” to facilitate the articulation
of these particle programs. We demonstrate the flexibility
and power of this framework for surface visualization with
the applications of singularity detection and display, non-
photorealistic surface illustration, and surface mesh algo-
rithm visualization.

1. Introduction

Particle systems are widely used in many areas of com-
puter graphics and scientific visualization. Among these
uses, they have also become an effective tool for the visu-
alization and interactive modeling of surfaces, and there are
now a wide variety of different particle systems devised for
performing various shape modeling tasks. This paper de-
scribes a new particle system programming framework (and
accompanying open source library) designed to facilitate
the implementation of these systems and the exploration of
new particle-based shape modeling applications.

The novel contributions of this systems paper include (1)
the decomposition of particle programs into attribute, be-
havior and shader building blocks, (2) the decomposition
of behaviors into force, constraint, integration and cleanup
phases, (3) the derivation of new behaviors that cause parti-
cles to move to the silhouette or to singularities of implicit
surfaces. The remainder of the paper is devoted to motivat-
ing and describing the design of this particle system frame-
work and demonstrating its usefulness for rapidly imple-
menting previously published particle systems and explor-
ing new particle system ideas.

(a) (b)

Figure 1. (a) Witkin-Heckbert floater particles.
(b) A particle system prototyped in our frame-
work showing the surface polygonized with
its silhouette in blue and singularities in yel-
low.

Particle systems were first used to model natural phe-
nomena like fire, smoke and water [20]. Though an early
application described how an oriented particle system could
self-organize to define a surface [24], the idea of using parti-
cles to track, display and control a predefined dynamic sur-
face has achieved more success with a wider variety of ap-
plications. Witkin and Heckbert [32] showed how a particle
system can be used as an effective tool for real-time display
and manipulation of implicit surfaces. They constrained a
particle system to lie on the surface, displaying it with a
textured field of opaque oriented polkadots on an implied
clear transparent surface (e.g. Fig 1(a)). This particle sys-
tem also served as a manipulation widget by selecting some
particles and solving a dynamic constraint to force the im-
plicit surface to pass through these particles.

A large number of applications that rely on surface-
constrained particle systems have appeared. The mutual
point repulsion of surface-constrained particles yeilds a use-
ful method for evenly sampling a surface, and has been used
for reaction diffusion texturing [26], retesselating meshes
[27], cellular textures [7], local surface parameterization
[18], morphing [14], free-form modeling [30, 16, 10] and
surface texture synthesis [28, 29], to name a few.

∗ Currently at NVidia Corp.

277

The use of a surface constrained particle system is thus
an important tool for computer graphics. However, its var-
ied applications often require sometimes subtle, sometimes
major, alterations of (1) the dynamics of particles as they
distribute across the surface, (2) the state carried by each
particle and the particle system as a whole, and (3) the
particle-user communication through appearance and inter-
activity. Though minor alteration can often be accomplished
through parameter changes in an existing particle system,
major alteration has often, as reported by many in the liter-
ature, required the construction of new particle system ap-
plications largely from scratch.

A similar situation occurred in the 1980’s when the
graphics community aggressively investigated the utility of
writing programs that procedurally generated texture and
other appearance phenomena, e.g. [4, 19]. New shading sys-
tems were reconstructed, largely from scratch, until in 1990
the Renderman shading language [8] showed how a small,
focused language could simplify, clarify and standardize the
articulation of procedural shading algorithms. Our goal is
to provide the same level of assistance to the articulation
of particle systems, focused primarily on the particle sys-
tems used for shape modeling and texturing.

Fleischer et al.[7] took a step in this direction by de-
composing particle behaviors into component pieces (e.g.
separating interparticle repulsion from surface adhesion),
then integrating these pieces through a biological metaphor.
Alias’s Maya graphics system contains an little language
called MEL that includes Particle Expressions capable of
customizing the behavior of a particle system, but requires
the composition of custom behaviors largely from scratch
and lacks the modularization of behaviors and attributes.

Our proposed framework extends Fleischer et al.’s be-
havior decomposition concept into a more complete par-
ticle programming framework capable of broader applica-
tions than cellular texturing. We also seek the programma-
bility found in MEL’s Particle Expressions, though embed-
ded within the modular approach of Fleischer et al.we find
so attractive.

As described in more detail in Sec. 3, our system orga-
nizes a particle system into (1) behavior objects that de-
compose and compartmentalize the action of a collection
of particles into reusable and interchangable modules, (2)
shader objects that likewise encapsulate the appearance and
user interactivity of the particles, and (3) attribute objects
that contain state information and utilities that can be eas-
ily shared and accessed among the different combinations of
behavior and shader objects. These objects are collected to-
gether to describe a homogeneous collection of particles in
a Particles object, and multiple Particles are collected into
a ParticleSystem object. For example, the Witkin-Heckbert
particle system [32] would consist of two Particles objects:
floater particles that disperse across the surface to display

it, as in Fig. 1(a), and controller particles that serve as di-
rect manipulation widgets used to model the surface.

The modular design of this framework provides an intu-
itive mental model for the rapid prototyping of particle pro-
grams from reusable high-level building blocks, while the
programmability of the building blocks allows the program-
mer to add functionality efficiently while focusing only on
the added component. This organization resembles that of
Renderman, which similarly allows the custom coding of
shader building blocks that could be reused in high-level
shading networks.

This new framework enables the easy implementation of
existing particle systems from their description in the liter-
ature and the exploration of new applications. Sec 3 con-
cludes with a demonstration of the Witkin-Heckbert par-
ticle system implemented in this framework. We then use
the framework for other applications. For example, Fig. 1(b)
demonstrates the use of the system to find and visualize the
singularities of an algebraic system, described in more de-
tail in Sec 4. We also investigate the use of particle systems
for non-photorealistic rendering in Sec. 5, polygonization in
Sec. 6 and mesh clustering in Sec. 7.

2. Previous Work

Witkin and Heckbert’s floater and controller particles
[32] inspired the framework described in this paper. They
used a surface constrained oriented particle system to dis-
play an implicit surface in real-time, faster than possible
then by ray tracing or direct polygonization [1, 2]. Their
floater particles could be decomposed into three basic be-
haviors. An adaptive repulsion system centers a variable-
width Gaussian energy function at each particle whose gra-
dient exerts a force on neighboring particles in search of
an energy minimizing equilibrium. A surface adhesion con-
straint restricts the force created by repulsion on the parti-
cles, by subtracting the force component normal to the sur-
face. Finally, a population control system subdivides iso-
lated particles and deletes crowded particles, and also dy-
namically grows or shrinks the support of the per-particle
Gaussian energy function depending on the proximity of
neighboring particles to hasten equilibrium. The main be-
havior of the controller particles is to convert their velocity
to a corresponding change in the implicit surface parame-
ters. The end of Sec 3 describes how our framework imple-
ments this particle system.

Our framework more closely resembles that of Fleischer
et al.[7], which decomposed the Witkin-Heckbert system
into component behaviors. Our framework extends this de-
composition into behaviors and shaders, the latter of which
controls the appearance and user interaction of particles.
The Fleischer et al.system also assumes a global state which
we have further decomposed into shared attribute modules

278

that can be loaded into the particle system on demand. Fur-
thermore, we have subdivided the specification of behav-
iors into four key phases: force, constraint, integration and
cleanup, and interleaved these phases among the behaviors
to ensure they occur in the proper order.

An alternative to our particle system programming
framework is provided by commercial graphics sys-
tems, exemplified by Alias’s Maya package. Maya includes
MEL a scripting language designed for programming cus-
tom behavior that includes Particle Expressions for con-
trolling the behavior of particle systems. These Particle
Expressions operate on a global collection of particle at-
tributes that resemble the attributes of our framework ex-
cept they have not been modularized, and neither have the
behaviors and shading instructions specified by the Parti-
cle Expressions. While any of our examples could have
been implemented in Maya, this lack of clear modular-
ization hinders the ability to reuse individual particle
behaviors or rapidly construct applications from a collec-
tion of building block modules.

3. A Particle System Framework

In the Wickbert system, a Particles is a homogeneous
collection of particles that behave similarly, and one or more
of these can be collected together in a ParticleSystem object.
A Particles object contains a sequence of ParticleBehavior
objects that collectively describe the action of the particles,
a sequence of ParticleShader objects that describe how the
particles are drawn (and manipulated), and a collection of
ParticleAttribute objects that contain shared data used by
the behaviors and shaders.

Each of the ParticleAttribute, ParticleBehavior and Par-
ticleShader objects inherits the same base class ParticleStuff
which provides a uniform interface for managing per-object
and per-particle parameters. This design allows an applica-
tion to provide a single dynamic GUI interface to adjust pa-
rameters for any of the attributes, behaviors and shaders.
Thus new behaviors, shaders and attributes can be designed

Behaviors

Behavior

Behavior

Attributes

Attribute

Attribute

Shaders
User

Parameters

Shader

Shader

Figure 2. Particles object data flow. Attributes
collect information shared by Behaviors and
Shaders. User observes particles and inter-
actively adjusts parameters.

and plugged into the system, and existing ones can be ad-
justed at run time.

3.1. Attributes

The per-particle and global data elements and procedures
of a Particles object are organized into several atomic Par-
ticleAttribute objects. These attributes are stored and ref-
erenced by name in an associative array. Behaviors and
shaders access an attribute at an initialization phase by the
attachAttribute(attr,name) method, which finds the attribute
named name and assigns the pointer attr to it. If no such
attribute exists, it finds and assigns the first compatible at-
tribute of the type of the pointer attr.

Examples: An ImplicitInterrogator attribute contains a
pointer to an implicit surface object similar to the those de-
scribed elsewhere [32, 9]. An AdaptiveRepulsionData at-
tribute contains the per-particle radii of the particles as
well as the global parameters setting the desired and maxi-
mum radii values of the particles.

3.2. Behaviors

The motion of particles is represented by an ordered col-
lection of ParticleBehavior objects, each of which repre-
sents a different atomic component of the behavior of the
particles. The contribution of a ParticleBehavior to the be-
havior of a particle is divided into four computational steps:

• applyForce() - add this behavior’s force to a force ac-
cumulator (a per-particle attribute),

• applyConstraint() - modify the current force on each
particle to satisfy a constraint on its motion,

• integrate() - update the particle (e.g. its position, ve-
locity) based on the constrained force held in each par-
ticle’s force accumulator, and

• cleanup() - create and destroy particles based on pop-
ulation dynamics.

These steps are interleaved among all of the behaviors such
that the applyForce() method of each of the behaviors (in or-
der) is called first, then applyConstraint() of each behavior,
then integrate() and cleanup(). Thus the constraint operates
on particles after all of the forces have been computed and
applied, integrate operates after all forces have been modi-
fied by all constraints, and cleanup operates after all parti-
cles have updated their new state.

Examples: The applyForce() method of the ParticleRepul-
sion behavior computes a force that drives particles away
from each other, whereas the applyConstraint() method of
the SurfaceAdhesion behavior removes the component of
the accumulated force that would cause a particle to leave
an implicit surface.

279

3.3. Shaders

An ordered collection of ParticleShader objects con-
trols particle appearance and user interaction. The Parti-
cleShader object includes a draw() method which defaults
to calling its drawParticle(i) method on each particle i. A
shader can define a new particle appearance by redefin-
ing drawParticle(), or can alter a global appearance by re-
defining draw(). Since each shader can change the graphics
state, their order is important. We also control user inter-
action through the shader, by redefining its event() method,
which is called by the application whenever a user interac-
tion event occurs (e.g. a mouse click).

Examples: The shader ParticleShaderDisk redefines
drawParticle(i) to draw a disk in the current coordinate sys-
tem, which is automatically set up by ParticleShader
defaults for particle i whereas the shader ParticleShader-
ConstMaterial redefines the OpenGL material appear-
ance attributes for all shaders that follow it by redefining
its draw() method. The shader CopyParticle waits for a cer-
tain mouse event to occur on one of its particles, and
when it does, directs a different Particles collection to cre-
ate a new particle at the current particle’s position.

3.4. The Programming Framework

We have found that this organization of the state, behav-
ior and appearance of particles provides an intuitive men-
tal model for the articulation of particle systems. It forces
the programmer to disect the conception of a particle sys-
tem into its component behaviors, the state needed by those
behaviors, and how it should communicate the results to the
user through its appearance and event processing. This or-
ganization also promotes the abstraction of behaviors, at-
tributes and shaders into reusable components that can be
connected in a variety of different configurations for the
rapid prototyping of new particle systems.

As such, this programming framework serves the same
purpose for specifying particle systems as did Renderman
for specifying the appearance of scenes. Rather than de-
velop a “little language” such as Renderman does for its
shaders, we have opted for the familiarity and speed of the
C++ language. This framework provides the details of par-
ticle system maintenance allowing the programmer to focus
on the kernel of the desired new particle action or state.

This framework also benefits from the object-oriented
structure of C++, supporting the inheritance and special-
ization of attributes, behaviors and shaders. For example,
the ParticleLocality attribute provides a method for find-
ing the neighbors of a given particle within a given radius,
and implements this by a simple linear-time global query
of the particles, whereas the ParticleLocalityGrid attribute
inherits the ParticleLocality attribute, but redefines its data

structure with a uniform 3-D voxel grid and its neighbor-
finding method with a constant-time grid lookup. Behaviors
and shaders that depend on particle neighborhood queries
can find an attribute of type ParticleLocality and use its
interface, even though the actual attribute is the more ef-
ficient ParticleLocalityGrid. Thus the user can use such
modules interchangeably depending on application specific
needs ranging from simple proof-of-concept prototypes to
efficient production runs, or in other cases for time/space
complexity tradeoffs.

The rest of the paper demonstrates the benefits of this
framework by showing how it can be used to articulate a va-
riety of different particle systems that would otherwise re-
quire a significant amount of effort to implement.

3.5. Example: Witkin-Heckbert Particles

Table 1 demonstrates this framework applied to the par-
ticle system described by Witkin and Heckbert [32]. They
constrained a mutually repulsive particle system to an im-
plicit surface to display the surface. The mutual repulsion
of these particles was controlled by a dynamic Gaussian en-
ergy function and the width of these Gaussians can vary
across particles and over time. These particles would also
subdivide when isolated and die when overcrowded.

These surface display particles are described by the
“Floaters” collection of particles in Table 1. The Adap-
tiveRepulsionData holds the Gaussian energy function in-
formation. The ImplicitInterrogator attribute is used to
query the implicit surface to which the particles ad-
here. The ParticleLocality attribute contains a getNeigh-
bors(i,radius) method that returns all particles within a dis-
tance of radius from particle i. This Witkin-Heckbert par-
ticle system was based on viscous dynamics where force
equals mass times velocity, which his handled within the
framework by the ViscousState attribute and the Viscous-
Dynamics behavior.

The second half of the Witkin-Heckbert approach was to
select some particles as “controllers” and perform a min-
imum work adjustment of the implicit surface parameters
to ensure the surface always passed through these particles.
When a controller particle is dragged, the implicit surface
will dynamically adjust to pass through it and the other con-
troller particles.

We implemented this action with the “Controllers” col-
lection of particles in Table 1. This particle collection is ini-
tially empty, and particles are added to it by the CopyParti-
cle shader in the “Floaters” collection. This particle collec-
tion also does not contain any behaviors with an integrate()
method. Particles are dragged by the DragParticle shader
which updates its position and stores the difference as a ve-
locity. The applyConstraint() method of the SurfaceDefor-
mation behavior then converts this particle velocity into a

280

Particles: “Floaters”

ParticleAttributes:
AdaptiveRepulsionData

Per-particle: radius
Global: desired rad, max rad, repulsion amp

ImplicitInterrogator
GetImplicit() { return an implicit }

ParticleLocality
getNeighbors(i,radius) { return neighbors }

ViscousState
Per-particle 3-vector: x,v

ParticleBehaviors:
ParticleRepulsion

attachAttribute(AdaptiveRepulsionData)
applyForce() { compute repulsion }
integrate() { change radius }

SurfaceAdhesion
attachAttribute(ImplicitInterrogator)
applyConstraint() { remove non-tangent vel. }

ViscousDynamics
attachAttribute(ViscousState)
integrate() { x += v * dt }

ParticleFate
attachAttribute(AdaptiveRepulsionData)
cleanup() { fission and death }

ParticleShaders:
ParticleDisk

attachAttribute(AdaptiveRepulsionData)
drawParticle(i) { draw disk }

CopyParticle
event(doubleclick) { create new

particle in “Controllers” }

Particles: “Controllers”

ParticleAttributes:
ImplicitInterrogator
ViscousState

ParticleBehaviors:
SurfaceDeformation

attachAttribute(ImplicitInterrogator)
attachAttribute(ViscousState)
applyConstraint() { transfer particle

velocity to implicit parameter velocity }
integrate() { update implicit params. }

ParticleShaders:
ParticleCylinder
DragParticle

Table 1. The “Witkin-Heckbert94” particle
system.

parameter velocity and its integrate() method updates the
parameters of the implicit surface indicated by the Implicit-
Interrogator.

4. Singularity Particles

Surface constrained particle systems perform well on
smooth surfaces, but can be problematic on surfaces with
singularities such as creases, cusps and self-intersections.
Such singularities occur on an implicit surface where the
gradient vanishes or becomes discontinuous. In such cases,
the orientation of particles becomes discontinuous and the
particles tend to oscillate about the singularity, as can be
seen at the bottom of Fig. 1(a).

Rosch et al. [21] first identified this problem, noticing
that when two sheets of a surface intersected (e.g. from the
3-D immersion of a Klein bottle) or in areas where curvature
increases to infinity (e.g. the cusp of a cone) the particles
were sparse. They solved the intersecting-sheets problem
by allowing particles to only repel other particles with sim-
ilar orientation. They overcame the sparseness in high cur-
vature areas by making particle repulsion radius inversely
proportional to curvature.

These enhancements could be integrated directly into
our framework through an enhanceed behavior that inher-
its ParticleRepulsion but compares particle orientations, and
through the addition of a ParticleCurvature attribute that ef-
fects the dynamic resizing of the particle radius in the Adap-
tiveRepulsionData attribute. But we instead propose an al-
ternative solution suited more for the visualization of singu-
larities on an isosurface.

Rather than manipulating the repulsion energy of a parti-
cle, we instead use our framework to construct a new collec-
tion of particles, called “Singularity Particles”, whose be-
havior causes them to adhere to the singularities of the sur-
face, and whose shaders indicate they are unoriented with
spheres (since the gradient vanishes at a singularity).

(a) (b)

Figure 3. (a) The crease in the middle of the
heart is caused by singularities. (b) Regions
with small gradients are indicated in blue.

281

(a) (b)

Figure 4. (a) Singularity particles find features in a CSG model. (b) Singularity particles display de-
generate portions of the Steiner surface that ray tracing would miss.

We will apply these singularity particles to a heart
shaped implicit surface [25] of the function

f (x,y,z) = (x2 +2.25y2 + z2 −1)3 −x2z3 −0.1125y2z3 = 0.
(1)

This surface contains rather obvious isolated singularities
at its bottom and top cusps. What is less obvious is that its
gradient magnitude reduces to zero along a closed loop at
its midsection, which causes problems with the surface nor-
mal when ray tracing it, as shown in Fig. 3, Our goal for sin-
gularity particles is to interrogate an implicit surface func-
tion to find these problem areas and make them obvious to
the investigator.

4.1. Implementation

We implemented singularity particles by creating a new
behavior module called SingularityInterrogator that adds a
force onto particles in the direction opposite to the gradient
of the gradient norm squared: −∇(||∇(f)||2). This moves
the particle in the direction of decreasing gradient magni-
tude, in search of a minimum whose value is zero. in other
words, we want to move in the direction where the gradi-
ent norm squared is small.

The collection of singularity particles is initially empty.
We could seed them with particles in random positions
across the surface but we found it was better to use the
floater particles, which give us the ability to interrogate a
sampling of the entire surface, to trigger the creation of new
singularity particles. A DetectSingularity behavior is added

to the floater particles that tracks the gradient of the implicit
surface at the particle’s position. When the gradient’s mag-
nitude falls below a preset threshold, or when its direction
changes faster than a present threshold, the behavior directs
the “Singularity Particles” to create a new particle at that lo-
cation. The singularity particles otherwise follow the same
behaviors as the floaters (though with the added force of the
SingularityAdhesion) and subdivide in an effort to grow and
cover whatever singularity exists, such as the closed loop at
the midsection of the valentine heart.

We also alter the ParticleLocality attribute in the
“Floaters” particles so its getNeighbors() method re-
turns not only nearby particles from “Floaters” but also
from “Singularity Particles”. Thus the singularity parti-
cles serve as a warning barrier to prevent floater parti-
cles from venturing too close to regions of the surface
which cause floaters to malfunction.

4.2. Discussion

We found that the combination of sampling with the
floaters and searching with the singularity particles con-
verges quickly for many shapes including those surfaces
with hard corners. We tested it a number of surfaces includ-
ing CSG models and the Steiner surface.

The singularity particles also serve as a feature detector
as they naturally find creases. The dumbbell shape formed
by the union of a capped cylinder with two spheres con-
tains two circular creases at the sphere-cylinder intersec-
tions. The floater particles are unstable near these locations,

282

and so generate singularity particles that find the creases and
move the unstable floaters away, as shown in Figure 4(a).

Steiner’s surface

f (x,y,z) = x2y2 + y2z2 + z2x2 + xyz (2)

includes the three coordinate axes, because if any of x, y, or
z is zero then f is zero. These axes are infinitely thin and a
simple ray tracer would likely miss these features. The addi-
tion of singularity particles makes clear where these degen-
erate surface segments lie, as shown in Fig. 4(b). This figure
reveals some floater particles (the ones that spawned the ini-
tial singularity particles) remain trapped on the axes by the
repulsion of the singularity particles, but these floaters will
eventually die due to isolation.

Thus with the addition of a single new behavior and
some reconnection of modules, we adapted a copy of the
floater particles to interrogate the singularities of an implicit
surface.

5. Silhouette Particles

Silhouette curves are widely used in the illustration of
surfaces as an effective method for visually conveying the
shape of a surface without the overhead or distraction of
photorealistic shading [17, 12, 31, 3]. What we call the sil-
houette curves are defined as all points on the surface where
the normal of the point N and the view vector v are perpen-
dicular or N ·V = 0. (This is perhaps more precisely known
as the contour.) We can use our new framework to con-
struct a new collection of silhouette particles, and use these
particles to construct a particle system that yields a non-
photorealistic rendering of the implicit surface.

5.1. Implementation

Our silhouette particles begin as a copy of the floater par-
ticles. To this, we add a new behavior called SilhouetteAd-
hesion that moves the particles toward the silhouette. The
silhouette is the zero set of the function g(x) = N ·V where
V is the view vector. Instead of solving for x directly, we
use gradient descent search to move particles in the oppo-
site direction of the gradient of h(x) = (N ·V)2, the squared
magnitude of the silhouette function. This gradient is thus

∇h(x) = ∇(N ·V)2 (3)
= 2(N ·V)((∇N)V +N∇V) . (4)

We really care only about the direction of the normal and
not that it is unit length, so we can replace N with ∇ f
and thus the gradient of the non-unit normal ∇N is the
Hessian matrix of second derivatives H. The view vector,
which depends on x and the camera position c, is defined as

V (x) = c− x and its gradient is the Hessian −I which can
be simply replaced by the scalar −1. This yields

f = 2(N ·V)(H V −N) (5)

as the force f implemented in the applyForce() method of
the new behavior SilhouetteAdhesion.

We also created a behavior called SilhouetteFate that
replaced ParticleFate in the silhouette particles. Particle-
Fate was tuned for the distribution of particles on a surface
whereas we now need particles to subdivide and populate
alive along a space curve.

5.2. Discussion

Fig. 5(a) demonstrates the results. We also devised a new
shader called ParticleChain that finds the two closest par-
ticles in the neighborhood and connects them with a line.
This provides a nice visualization of the silhouette curves,
including its cusps and occluded portions. However, this
would not make a very convincing illustration of the torus.

Fig. 5(b) demonstrates the same behavior with different
shaders. We modified to ParticleDisk shader of the floater
particles to draw large overlapping disks of the background
color. We deleted the sphere particle shader and altered the
ParticleChain shader to display more artistic stroke shapes
between the silhouette particles. The result is an illustration
of the surface that removes the hidden portions of the sil-
houette curves.

By copying the floater particles, we were able to depend
on the fact that our silhouette particles would adhere to the
surface and repel each other. This allowed us to focus our
effort on the additional force needed to push particles along
the surface to the silhouettes.

(a) (b)

Figure 5. Silhouette particles interactively
find the silhouette curves on a torus (a). A
stroke shader yields a hand drawn look for
the same torus, using large floater disks of
the background color to hide occluded sil-
houette segments (b).

283

6. Dynamic Meshing

While evenly distributed particles allow us to infer a sur-
face, it would be preferable to represent a surface with a tri-
angulation. The speed and robustness of the Witkin Heck-
bert approach [32] is due partially to their ability to ignore
the overhead of connecting particles into a triangle mesh
and to maintain the validity of this triangle mesh as the un-
derlying implicit surface changes. The connection of par-
ticles into a dynamic triangle mesh has been investigated
before (e.g. [23] which also included a topology guaran-
tee). Welch and Witkin used adaptive meshing for free form
modeling [30]. Markosian et al. used a particle based dy-
namic mesh that allows users to sculpt free-form surfaces
[16]. Here we discuss the implementation of a dynamic
mesh using our proposed framework, assuming the per-
timestep change in the surface is small and ignoring changes
in topology of the underlying surface.

6.1. Implementation

Our approach again begins with a copy of floater par-
ticles. We augment these particles with a ParticleMesh at-
tribute that encapsulates a half-edge mesh data structure that
references particle positions (such as those in ViscousState)
as the vertices. A ParticleLocalityMesh attribute inherits
and replaces ParticleLocality, and uses the half-edge mesh
in the ParticleMesh attribute to accelerate the getNeigh-
bors() function.

The ParticleRepulsion and SurfaceAdhesion behaviors
keep the mesh vertices on the surface, but their motion can
deform and even invert faces in the mesh. An additional be-
havior called MeshShape is constructed to perform edge
flips in its cleanup() phase in an effort to keep the mesh
as close to Delaunay as possible. While some have recom-
mended maximizing the minimum face angle [16], we in-
stead use the criterion of flipping an edge only when the
new edge will be shorter. This criterion was easier to imple-
ment and appears to work satisfactorily for our example, as
shown in Fig. 6.

We also implemented vertex split and edge collapse
routines in the cleanup() phase of MeshShape attribute.
Some have recommended edge length as a criterion for cre-
ation/deletion of new vertices [16], but we have found that
setting triangle area and triangle count are also useful fac-
tors. We use the Markosian et al. [16] idea to sort the poten-
tial splits or collapses based on area and only apply to the
top portion of them to keep an interactive rendering rate.

6.2. Discussion

As before with the shaded strokes of the chain connect-
ing the silhouette particles, we have augmented our parti-

Figure 6. A dynamic mesh.

cle system with an attribute structure whose contents are
not necessarily related to a single particle. In this case, the
ParticleMesh half-edge data structure does not have a one-
to-one correspondence with the particles, which serve as its
vertices. Nevertheless, the framework is flexible enough to
handle such an attribute.

We also benefit from inheritance by specializing Parti-
cleLocality into ParticleLocalityMesh which uses the mesh
datastructure for acceleration. This specialization means we
do not need to change ParticleRepulsion, even though the
new ParticleLocalityMesh attribute is reporting a different
collection of neighbors.

7. Mesh Algorithm Visualization

We can use the addition of a mesh in our particle system
framework for the application of mesh algorithm visualiza-
tion. In addition to the ability to implement mesh process-
ing algorithms using our programming paradigm, the exe-
cution of these particle programs allows the user to observe
the algorithm in action which is useful for the purposes of
debugging, presentation and education.

The k-means algorithm is widely used for clustering data
because of its ease of implementation [11], though a vari-
ety of variations exist [6, 22, 13, 15]. Since each particle
acts independently we can implement cluster growth as a
per-particle operation.

7.1. Implementation

We first create a dynamic mesh collection of particles as
specified in the previous section that holds the input mesh.
We will call this collection “Mesh.” Even though the mesh is
dynamic, it does not change in this example so we delete the
ParticleRepulsion behavior. Furthermore, since we are load-
ing a mesh, there is no underlying implicit surface so we
delete the ImplicitInterrogator attribute and the SurfaceAd-
hesion behavior.

284

We then create a second collection of particles called
“Clusters” where each particle will represent a cluster and
is positioned at its cluster center, the centroid of its seed
face. The “Clusters” particles contain a ClusterMesh behav-
ior that performs the clustering operation. This behavior be-
gins with an initial collection of particles corresponding to
the centroids of faces of “Mesh” that represent cluster cen-
ters.

The “Clusters” collection of particles also contains a
“FaceCluster” attribute which stores a per-particle list of
face indices corresponding to faces in the ParticleMesh of
“Mesh.” These lists are initialized with the seed face for
each particle in “Clusters.”

ClusterMesh proceeds by growing face clusters in the
ParticleMesh held in “Mesh.” Once the clusters cover the
entire mesh, ClusterMesh moves each of its particles, which
correspond to cluster centers, to the centroid of the center-
most face of the cluster it generated. ClusterMesh then re-
peats until the particle positions converge.

A particle shader in “Clusters” is responsible for setting
the color of faces in the ParticleMesh attribute of “Mesh” to
the correct cluster color. A particle shader in “Mesh” then
draws the mesh with its cluster-colored faces and a Particle-
Sphere particle shader in “Clusters” indicates the location
of the cluster centers.

(a) (b)

Figure 7. (a)Pawn model with 254 faces, 3
clusters, 3 iterations. (b) Cow model with
5802 faces, 5 clusters, 10 iterations.

7.2. Discussion

This particle system implementation of k-means cluster-
ing provides an intuitive algorithm visualization, allowing
the user to click on any particle to expose the current inter-
nal variable settings of its attributes. Users can also interac-
tively steer the partitioning, adding and deleting cluster cen-
ters through interaction with the “Cluster” particles.

We use our particle system as a visualization tool in this
mesh partitioning algorithm, but the idea of using particle

systems as a debugging tool is not new. Crossno and Angel
used this as a software engineering technique [5].

8. Conclusion

We have developed a particle system framework and lan-
guage that allows users to rapidly create and reuse behaviors
for a particle system. We have tested this framework with a
number of applications that shows the reusability and ex-
tensibility due to the design of atomic behaviors.

In applications like singularity searching and artistic ren-
dering for implicit surface, we develop new ways to interro-
gate properties of implicit surfaces with particles. We also
introduce new ways of adapting mesh algorithms in parti-
cle systems.

Particle systems are needed to simulate natural phenom-
ena like cloth untangling, water spray, snow, smoke, etc.
This idea of iterative refinement implicitly resides in many
of these algorithms, which our particle system can exploit.
When developing and debugging these algorithms, our par-
ticle system helps to visualize each step of the simulation.
This provides developers with direct insights to the simula-
tion process. Therefore, our particle system serves as a pow-
erful visualization framework and debugging tool.

8.1. Future Work

There are many applications that fit our generalized par-
ticle system model. For the applications we have imple-
mented in this paper, for example, dynamic meshing, we
would like to update our topology guaranteed polygoniza-
tion for more complex implicit surfaces. Interactive topol-
ogy guaranteed polygonization will improve the implicit
surface modeling systems. Then we can have real-time
polygonization instead of independent particles.

For the particle system itself, we would like to make
the particle shading framework more flexible, for example,
changing the behavior and shader at run time. This would
requires run-time interpretation of a particle behavior lan-
guage. For the moment, we are satisfied with the C++ lan-
guage for specifying the details of particle attribute, behav-
ior and shader functionality.

In recent years, we have seen rapid advances in the
graphics hardware along with graphics programming lan-
guage e.g vertex and pixel shader. This particle system
framework holds promise as a conceptual tool for a pos-
sible new way to program vertex shaders.

8.2. Acknowledgments

The algebraic heart surface in Fig. 3(a) was ray traced
by Lin Shi. This research was supported in part by the NSF
ITR CCF-0121288.

285

References

[1] James F. Blinn. A generalization of algebraic surface draw-
ing. ACM Trans. Graph., 1(3):235–256, 1982.

[2] Jules Bloomenthal and Keith Ferguson. Polygonization of
non-manifold implicit surfaces. In Proceedings of the 22nd
annual conference on Computer graphics and interactive
techniques, pages 309–316. ACM Press, 1995.

[3] David J. Bremer and John F. Hughes. Rapid approximate sil-
houette rendering of implicit surfaces. In Proceedings of Im-
plicit Surfaces 1998, pages 155–164, jun 1998.

[4] Robert L. Cook. Shade trees. In Proc. SIGGRAPH 84, pages
223–231, 1984.

[5] Patricia Crossno and Edward Angel. Visual debugging of vi-
sualization software: a case study for particle systems. In
Proceedings of the conference on Visualization ’99, pages
417–420. IEEE Computer Society Press, 1999.

[6] Greg Turk Eugene Zhang, Konstantin Mischaikow. Feature-
based surface parameterization and texture mapping. techni-
cal report GIT-GVU-03-29, Georgia Institute of Technology,
2003.

[7] Kurt W. Fleischer, David H. Laidlaw, Bena L. Currin, and
Alan H. Barr. Cellular texture generation. In Proc. SIG-
GRAPH 95, pages 239–248, 1995.

[8] Pat Hanrahan and Jim Lawson. A language for shading and
lighting calculations. In Proc. SIGGRAPH 90, pages 289–
298, 1990.

[9] J.C. Hart, E. Bachta, W. Jarosz, and T. Fleury. Using particles
to sample and control more complex implicit surfaces. In
Proc. Shape Modeling International, pages 129–136, 2002.

[10] Takeo Igarashi and John F. Hughes. Smooth meshes for
sketch-based freeform modeling. In Proceedings of the
2003 symposium on Interactive 3D graphics, pages 139–142.
ACM Press, 2003.

[11] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a
review. ACM Computing Surveys, 31(3):264–323, 1999.

[12] Robert D. Kalnins, Philip L. Davidson, Lee Markosian, and
Adam Finkelstein. Coherent stylized silhouettes. ACM
Transactions on Graphics, 22(3):856–861, July 2003.

[13] Sagi Katz and Ayellet Tal. Hierarchical mesh decomposi-
tion using fuzzy clustering and cuts. ACM Trans. Graph.,
22(3):954–961, 2003.

[14] Aaron W. F. Lee, David Dobkin, Wim Sweldens, and Peter
Schröder. Multiresolution mesh morphing. In Proc. SIG-
GRAPH 99, pages 343–350, 1999.

[15] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome
Maillot. Least squares conformal maps for automatic tex-
ture atlas generation. In Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques,
pages 362–371. ACM Press, 2002.

[16] Lee Markosian, Jonathan M. Cohen, Thomas Crulli, and
John Hughes. Skin: a constructive approach to modeling
free-form shapes. In Proc. SIGGRAPH 99, pages 393–400.
ACM Press/Addison-Wesley Publishing Co., 1999.

[17] Lee Markosian, Michael A. Kowalski, Daniel Goldstein,
Samuel J. Trychin, John F. Hughes, and Lubomir D. Bour-
dev. Real-time nonphotorealistic rendering. In Proceedings

of the 24th annual conference on Computer graphics and in-
teractive techniques, pages 415–420. ACM Press/Addison-
Wesley Publishing Co., 1997.

[18] Hans Kohling Pedersen. Decorating implicit surfaces. In
Proc. SIGGRAPH 95, pages 291–300, 1995.

[19] Ken Perlin. An image synthesizer. In Proc. SIGGRAPH 85,
pages 287–296, 1985.

[20] W. T. Reeves. Particle systems a technique for modeling a
class of fuzzy objects. ACM Trans. Graph., 2(2):91–108,
1983.

[21] Angela Rosch, Matthias Ruhl, and Dietmar Saupe. Inter-
active visualization of implicit surfaces with singularities.
Computer Graphics Forum, 16(5):295–306, 1997.

[22] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and
H. Hoppe. Multi-chart geometry images. In Proceedings
of the Eurographics/ACM SIGGRAPH symposium on Geom-
etry processing, pages 146–155. Eurographics Association,
2003.

[23] Barton T. Stander and John C. Hart. Guaranteeing the topol-
ogy of an implicit surface polygonization for interactive
modeling. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages 279–
286. ACM Press/Addison-Wesley Publishing Co., 1997.

[24] Richard Szeliski and David Tonnesen. Surface modeling
with oriented particle systems. In Proceedings of the 19th an-
nual conference on Computer graphics and interactive tech-
niques, pages 185–194. ACM Press, 1992.

[25] Gabriel Taubin. An accurate algorithm for rasterizing alge-
braic curves. In Proceedings on the second ACM symposium
on Solid modeling and applications, pages 221–230. ACM
Press, 1993.

[26] Greg Turk. Generating textures on arbitrary surfaces using
reaction-diffusion. In Proc. SIGGRAPH 91, pages 289–298,
1991.

[27] Greg Turk. Re-tiling polygonal surfaces. In Proc. SIG-
GRAPH 92, pages 55–64, 1992.

[28] Greg Turk. Texture synthesis on surfaces. In Proc. SIG-
GRAPH 2001, pages 347–354, 2001.

[29] Li-Yi Wei and Marc Levoy. Texture synthesis over arbitrary
manifold surfaces. In Proc. SIGGRAPH 2001, pages 355–
360, 2001.

[30] William Welch and Andrew Witkin. Free-form shape design
using triangulated surfaces. In Proceedings of the 21st an-
nual conference on Computer graphics and interactive tech-
niques, pages 247–256. ACM Press, 1994.

[31] Georges Winkenbach and David H. Salesin. Computer-
generated pen-and-ink illustration. In Proceedings of the
21st annual conference on Computer graphics and interac-
tive techniques, pages 91–100. ACM Press, 1994.

[32] Andrew P. Witkin and Paul S. Heckbert. Using particles to
sample and control implicit surfaces. In Proceedings of the
21st annual conference on Computer graphics and interac-
tive techniques, pages 269–277. ACM Press, 1994.

286

	05b_hdu_implicit_cad.pdf
	05b_hdu_implicit_cad.pdf
	A shape design system using volumetric implicit PDEs
	Introduction
	Related work
	Formulating implicit PDEs
	Implicit elliptic PDE formulation
	Radial basis function
	Numerical simulation
	Constrained system
	Iterative method

	Boundary conditions for different applications
	Shape design using traditional boundary constraints
	Shape blending
	Shape reconstruction from sketch curves
	Shape reconstruction from unorganized scattered data points

	Sculpting and manipulation toolkits for implicit PDEs
	Modifying blending coefficients
	Sketch curve sculpting
	Local manipulation of implicit PDE solids

	Implementation and discussion
	Conclusion
	Acknowledgements
	References

	07b_Shen-2004-IAI.pdf
	1 Introduction
	2 Background
	3 Methods
	3.1 Value Constraints at Points
	3.2 Value Constraints Integrated over Polygons
	3.3 Normal Constraints
	3.4 Interpolation and Approximation
	3.5 Fast Evaluation
	3.6 Preprocessing

	4 Results and Discussion
	A Analytical Line Integrals

